
MBINA TANA L N fIV DE 1.(SU SIEC P/O 12/1

MAY Ui 9 0 NAYR MSOOIA'SI-K@330
U~NCLASSIFIED STAN-CS-82-907O?

Ill~~EONE 0
mhhhhhhhhmmml
mhmmhhhhhhhl
mmhhohomhmml
lomhmhmhmhl
LI



May 1982

cpnNo. S'r,"
8 2Q9.

COrn a~t 0 rAlg 1rithMs

by

Ernlst W. Mayr

DepartM 
Cellut

St-1nford tinve'rsity 
"

Stanord CA 94305

1;RVE 
O PUBLIC RELEASE; DISTRIBUTION UNLIMITED

~9~'~t065



Stanford University
Department of Computer Science

Combinatorial Algorithms I

by

Ernst W. Mayr

May 1982

ii 1

This report is an edited collection of the class notes prepared for Course 253 A of the same title. The
course was taught at the ,;B.partment of Computer Science at Stanford University in the Winter Quarter
1982. The author wishes to thank the students who took part in that course for their interest which in
turn provided much of the motivation to prepare this report, and in particular Tom Spencer. who acted
as TA for the course and who helped a lot to make these notes look the way they do,

The publication of this report was supported in part by National Science Foundation grant MCS-
77-23738 and by Office of Naval Research contract N00014-81-K-0330.

__ i



TABLE OF CONTENTS

1. INTRODUCTION 1......................................1
1.i. Combinatorial Algorithms ............................................ 1
1.2. M achine M odels .. .................................................. 1

1.3. Complexity M easures................................................ 3
1.3.1. Complexity Functions ............................................ 3
1.3.2. Asymptotic Complexity ........................................... 4

1.4. Reduction and Recurrences ........................................... 5
1.4.1. M ultipliers ................................................... 5
1.4.2. Characteristic Polynomials ........................................... 6
1.4.3. Generating Functions ............................................ 7
1.4.4. Domain and Range Transformations ................................... 8

2. HIGHER LEVEL DATA STRUCTURES .................................... 9
2.1. Basic Set Operations ............................................. . 9
2.2. Binomial Queues ................................................. 10

2.2.1. Definitions . ................................................. 10
2.2.2. U nion . ..................................................... 11
2.2.3. Insertion ................................................... 11
2.2.4. M in ...................................................... ll
2.2.5. Deletion .................................................... 11

3. SELECTION - THE MEDIAN PROBLEM .................................. 13
3.1. The Blum-Floyd-Pratt-Rivest-'arjan Selection Algorithm ........................ 13
3.2. The Schinhage-Paterson-Pippenger Median Algorithm .......................... 14
3.3. A Lower Bound for the Median Problem ................................. 17
3.4. References .................................................... 19

4. MINIMUM SPANNING TREES ........................................ 20

4.1. A Schema for Minimum Spanning Tree Algorithms ............................ 20
4.2. Kruskal's Algorithm ............................................... 21
4.3. A Better Minimum Spanning Tree Algorithm ............................... 21

5. PATH COMPRFSSION .............................................. 24
5.1. The UNION-FIND Problem ......................................... 24
5.2. The Weighting Heuristic ............................................ 24
5.3. The Path Compression Heuristic ....................................... 25
5.4. Upper Bounds for UNION-FIND with Path Compression ....................... 25

5.4.1. Path Compression without Weighting Hcuristic ............................. 26
5.4.2. Path Compression and Weightcd UNION ............................... 26

6. PA'rrERN MATCHING IN STRINGS ...................................... 28
6.1. Pattern Matching Problems ........................................... 28
6.2. Sets of Patterns Given by Regular Expressions ................................ 28
6.3. Automata Recogni7ing Substrings ...................................... 29
6.4. The Knuth-Morris-Pratt Pattern Matching Algorithm ........................... 30
6.5. 'Ibe Boyer-Moore String Matching Algorithm ............................... 31
6.6. Space Efficient Linear Pattern Matching .................................. 32

7 6.7. Position Trees .................................................. 35

__ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ _ _ _ _ > 2



7. SEARCHING GRAPHS AND APPLICATIONS .................... .......... 36
7.1 The Labelling of Trees ............................................. 36
7.2. Search in Graphs ................................................ 37
7.3. Connectivity ................................................... 38

7.3.1. Biconnectivity ................................................ 38
7.3.2. Strongly Connected Components .................................... 41

7.4. Planarity Testing ................................................ 42
7.4.1. Planar Graphs ................................................ 42
7.4.2. The Hopcroft-Tarjan Planarity Testing Algorithm .......................... 45

7.5. Shortest Path Problems ............................................. 49
7.5.1. Dijkstra's Single Source Algorithm .................................... 49
7.5.2. The All Pairs Shortest Paths Problem ................................. 50
7.5.3. Min-Plus Transitive Closure ....................................... 51
7.5.4. Boolean Matrix Multiplication, Transitive Closure ......................... 52
7.5.5. The Four Russians' Algorithm for Boolean Matrix Multiplicatior ................ 53

7.6. References .................................................... 54
8. MAXIMUM MATCHINGS IN GRAPHS ................................... 55

8.1. Fundamentals .................................................. 55
8.2. Maximum Matchings in Bipartite Graphs ................................. 58
8.3. Maximum Cardinality Matching in General Graphs ........................... 60
8.4. Maximum Weight Matching Problems ................................... 60

9. MAXIMUM FLOW IN NETWORKS ..................................... 62
9.1. Flows and Cuts .................................................. 62
9.2. The Dinits Algorithm .............................................. 64
9.3. The Malhotra-Pramodh Kumar-Maheshwari Algorithm ......................... 66
9.4.. Extensions and Restrictions ........................................... 67
9.5. Applications ................................................... 67

10. PROBLEM S ..................................................... 69
11. REFERENCES ................................................... 76

iii



Chper I

Introduction

1.1. Combinatorial Algorithms.

The title of this course is "Combinatorial Algorithms". In order to get some idea of what this means,
let's look at the two words in turn (and remember this is not supposed to give a formal, mathematical
definition):
- to explain "algorithm" it should actually suffice for all our present purposes if we take it as referring

to a "correct computer program (in, say, Pascal or Lisp) guaranteed to terminate on all inputs", or, to
be less idealistic, on all allowed inputs (but then of course the problem arises which inputs are allowed,
and how do we distinguish them!).

- the semantics of "combinatorial" is harder to describe. Classical combinatorics is the science of the
properties of finite collections of discrete objects. Of course, the objects might be anything (like
superdenumerable ordinals), but from a combinatiorial point of view we are only interested in certain
discrete and finitarily represented properties.

If that is all, you might correctly remark that the word "combinatorial" in "combinatorial algorithms"
is simply redundant because (digital) computers on which algorithms supposedly are executed are definitely
finitary and discrete.

Hence there must be a more traditional meaning which distinguishes combinatorial algorithms from
algorithms in general. Let me try to put this necessarily vague notion perhaps as follows:

"Combinatorial algorithms are those dealing with problems which would be more
or less trivial if one could inspect all possible combinations of the (discrete) objects

" .of any given problem instance."
Of course, this is a very indirect explanation of what a combinatorial algorithm might be, but it has

one definite merit to it: it highlights the fact that for all the problems we shall be concerned with we will
have to search for solutions other and better than enumerative ones.

1.2. Machine Models.

We now want to take a somewhat closer look at the computer model which we shall have in mind
in most of'the cases, or at least in the back of our mind. The reason is that if we intend to make
formal (mathematical) statements about computers and the programs running on them we also have to
give formal definitions of what computers and programs are. For our purposes, however, it suffices to
obtain some rough idea, knowing that when needed there would be a whole elaborated theory to rely on
and supply all the missing details.

Thus, our machine model which is called a Random Access Machine (RAM), could be considered as
abstracted from an (almost real) computer built, say, at the beginning of the sixties: input and output

-4



2 1. INTRODUCTION

would be solely via punched paper tape, program storage would be read-only (quite modern again), and
there would be just one register serving as accumulator.

A more formal diagram would look like

read head

input tape

mO Accumulator

finite state
m2 R/W memory

controlmeoyr
-- accessI-

Scontrol

punch head

- Diagram of RAM -

We idealistically assume that there arc infinitely many memory cells mo, m ,.. and that each of
them can hold an arbitrary (signed) integer. (It seems necessary to remark here that more and more often
these two assumptions do appear as idealistic; certainly it is possible to discard the second assumption (as
even the definitions of some new programming languages do) and simulate arbitrary size integers without
(at least theoretically) undue loss of efficiency, but also disposing of the first would just leave us with
finite automata). The program or finite state control of a RAM very much looks like assembly language
with one address instructions allowing:
- direct, immediate, and indirect addressing for memory transfer and the basic arithmetic and logical

opratio.
. conditional and unconditional branching,

| | | I / | | _______



1.3. COMPLEXITY MEASURES. 3

-input and output, and one or a few control statements (like STOP).
We do not specify any more details because we expect that we will never have to use this rather

awkward machine language, and assume th~at instead have a very sophisticated compiler from a high level
Algol6O- or Pascal-like language which even allows us some statements in natural English. Thbis will make
the presentation of algorithms closer to our way of thinking and (hopefully) easier to understand. But
when analyzing the execution of such programs on a RAM we always have to think of the compiled
version as being executed.

1-3. Complexity Measures.

Now that we have presented the basic features of our formal model we want to see how to use it.
Welt, we would like to employ algorithms and computers in order to get solutions for problems in which
we are interested and from which we expect a profit in some sense. Pursuing this economical setup a
little bit further, computers are scarce resources, and we incur some costs using them. And, naturally, we
are interested in minimizing these costs.

As in economics, we have to clarify two questions first:
(1) how is the cost of running a specific algorithm on a specific (model 'f a) computer defined, i.e., how

do we measure cost?
(2) given two solutions to a problem, how do we compare their respective costs?

1.3.1. Complexity Functions

Most of the algorithms we shall be looking at are able to solve not only one instanceof ?. problem
(say, determining whether the 1,OP'st digit of the decimal expansion of 7r is 5), but normally (at least on
our idealized computer model, the RAM) an infinite number of such instances (in the above example:
finding out whether the n-th digit of the decimal expansion of 7r is 5, for any positive integer n given
to the algorithm). And actually it is just such an infinite collection of instances (given by means of some
general parameterization of by a defining common property) what we mean by a problem.It In order to be able to work with our formal computer model we also have to find a formal definition
of a problem. Here, an instance of a problem would be given by some string, i.e., finite sequence of
characters over some fixed, finite alphabet "known" to the computer, which for us somehow describes
the problem instance we have in mind. As die execution of an algorithm, given some string as input is
independent of what meaning we attach to the string, we arrive at the following formal

Definition:

(a) A problem is a subset L of the set EJ of strings over some (fixed, finite) alphabet E.
(b) An algorithm A (on a RAM) recognizes the problem L if, for any z E V. on input x the execution

of A eventually stops and the output is
"yes", if x E L.
"no",. otherwise.

(c) We say that A accepts L if, for any z E E6, on input x the execution of A eventually stops with
output "yes" if and only if z E L.
(So we do not care what A does on any input y 91, except that it must not stop with output "yes".)
Returning to our trivial example above, we might not be interested only whether the n-th digit of

w is S. but instead wouid like, on input n, to obtain the first n decimal digits of wr. Here we are not
dealing with a recognition problem with a simplc yes/no answer, but with the more general problem of

w. computing a function, say from Y," to E*;

* tWe ne by convetio ut Eissuh tA is abe to dtmine tend ofinput on its input ape.



4 1. INTRODUCTION

Definition:

Let f:2 E* be a (in general partial) function. An algorithm A (on a RAM) computes f if, for
any x E E% on input x the execution of A eventually stops if and only if f(x) is defined if and only if
A stops with output 1(z).

For a given problem L or function f, there naturally are - as in real world economics - many
different "costs" or, as we call them, complexities, and it always depends on the circumstances which
ones are relevant or interesting. Some are static in the sense that they do not depend on the problem
instances, e.g.
- the minimal size (= number of instructions) of an algorithm which recognizes L or computes f;
- the minimal number of branching instructions in an algorithm for L or f .
Other complexity measures are dynamic in that they do depend on problem instances, i.e., the input. The
two most important kinds of dependencies are
- worst-case complexity, where, for any n E N, the maximum cost for any x of length n is taken with

(a) x E E* for a recognition problem,
(b) z E L for an acceptance problem, and
(c) x E domf for computing a function f.

- expected or average complexity, where, for some 'size' function and probability distributions over all
inputs of the same 'size', the average cost (according to the corresponding probability distribution) over
all inputs of each 'size' is taken.

We shall mostly emphasize worst-case complexity because it is universal (with respect to the underlying
model) and does not depend on the choice of more or less arbitrary probability distributions.

The two most important types of costs or complexity which we shall be considering are those
concerned with (computation) time and (storage) space.

The time used in the execution of an algorithm A on some input x E E' is the sum of the time
spans for all executions of the basic instructions in the algorithm.

The space used in the execution of A on input x is the sum of the 'spaces' occupied by the memory
cells referenced during the execution of A.I? To complete the definition of time and space complexity of an algorithm, it remains to state the time
required to execute each RAM instruction and the space used by a memory cell. Again thcre are two
commonly used ways to define these costs. The first is called the uniform cost criterion. It attributes
one unit of cost (time or space) to each execution of a basic RAM instruction and to each memory cell,
regardless of its contents. Unless otherwise mentioned we shall refer to this cost criterion. It is appropriate
as long as a real world computer can simulate the RAM algorithm using only some fixed amount of time
and storage words per basic RAM instruction and memory cell. In principle this simply means that the
numbers stored in the RAM memory cells must not become too big. If this should happen, a somewhat
more realistic approach might be the so-called logarithmic cost criterion which defines the space used by a
memory cell to be the length of the binary representation of the biggest (in absolute value) number stored
in the memory cell during the execution of the algorithm, and which assigns to each basic instruction the
sum of these lengths of all its operands as the time span used. A detailed example of logarithmic costs for
a RAM instruction set can be found in [AHU741. We remark that the time and/or space complexity of
some algorithm may be widely different depending on whether the uniform or logarithmic cost criterion
is employed.

1.3.Z. Asymptotic Complexity.

We now address the problem of comparing complexity functions. Assume that for a certain problem
we have two algorithms, one with complexity f(n) = n1-1 log n, the other with complexity g(n) =
n3/log n t. TI'ough for small n the second algorithm has a smaller complexity, there is a break point
4"a i dowota the ni-Valued solution to 2



1.4. REDUCTION AND RECURRENCES. 5

no (no =t% 39) such that for n > no the situation is reversed (if the complexity considered is worst-case
complexity this does not mean that for all inputs of size at least no the first algorithm has a lower
complexity that the second; there m'zvt be however infinitely many such instances).

Most of the tilhaes we are interested, in comparing two algorithms when applied to problem instances
of ever bigger size. The complexity of an algorithm for the input size tending to infinity is called its
asymptotic complexity, and using it as criterion we might therefore say that the first algorithm above has
a lower complexity than the second (note however that in practical life the situation is not as simple,
and that for a given problem instance the selection of the better algorithm always depends on the break
point).

For the comparison of complexity functions in the asymptotic sense, we use the following notation:

Definition:

Let f, g : N -+ N be two functions; we say that
(a) f = 0(g) if 3c > 0 such that f eg;
(b) f = o(g) ifVc > 0 f !,.. cg

(f ! a.e. g means f(n) < g(n) for all but finitely many n);
(c) f = f(g) if 3c > 0 such that f !... eg:
(d) f = 8(g) if f = 0(g) and f.= fl(g).

(See [Knu761.)

1.4. Reduction and Recurrences.

When designing an algorithm for some problem it often happens that we can derive a solution for any
instance with, say, relatively little cost if we only have the solutions to a few other, smaller instances of the
same problem or of instances of some other problem which we know how to solve. In the second case it
is immediate to determine the complexity of an algorithm for the first problem which uses this reduction,
from the known complexity of the second algorithm and the additional cost for the reduction. When we
wish to determine the complexity of an algorithm constructed according to the first case, however, weusually end up with a relation of the following form for the complexity C of our algorithm:

C(n) = F,(C(n11 ), C(,('))) + 1 2(n),

where F, describes the dependency on the complexities of the smaller problem instances of size
n'),,... , n('), and F2 represents the additional cost incurred to form a solution for the original problem
instance of size n. We shall now discuss some techniques for solving such recurrence relations, i.e., finding
closed-form expressions for the function C when the function F, is sufficiently simple. Nonetheless,
these methods provide a systematic way to deal with a fairly large class of recurrence equations (also
see [Lue8O]). The techniques are, in turn, multipliers, characteristic polynomials, generatingjuncions, and
domain and range transformations. We shall demonstrate each technique by means of an example where,
for notational convenience, we write f,, for f(n).

1.4.1. Multipliers

Suppose that the following recurrence relation is given:
f. =2f.-I + n; for n > 2,

That isJ 41 jf + n



6 1. INTRODUCTION

In_, = 2f. 2 + (n - 1); /.2jn_, -- 21n-3 + (n - 2); /. 4

f.-, = 2n_,_,- + (n- i); 1.2'

f2 = 2f, + 2; .2n-2

If we multiply each equation with the multiplier indicated to its right, then sum up all equations and
cancel identical terms on both sides, we obtain

p-S
fft =2-lf, + D(, - i)2

= -(n -i)2i  because f, =
i==O

"-I i

= 2 = 2"+'- n- 2.
=O j=0O

The last line follows by elementary transformations (also see 1.4.3.). Hence we obtain

f,n = 2"+ ' - n - 2.

1.4.2 Characteristic Polynomials.

As an example, suppose we are given )
A =Jn-1 + A.-2; for n > 2

f =1, fo = O.

Such a recurrence is called a homogeneous linear recurrence with constant coefficients.
If we try to set f. a" for some a still to be determined we get the following characteristic equation

for a (assuming that a 9 0):

a -a - 1 =0, and hencea, 2

It is clear that every linear combination
cia", + cga"'

is then a solution to the recurrence relation f - A-1 - fA--- 0 for n > 2. The boundary conditions
for fe and , determine specific values for c1 and c2, in our example cl = I/V5 = -c 2 , and hence

Nr-K + NI/'- (1 - )f].

The question is whether by this method we can obtain all solutions to recurrences like the one above. It
is not hard to see that this is true if all roots of the characteristic polynomial are distinct. For the general
case, with multiple roots allowed, we cite the following theorem (for a proof see JLiu68]):

---



1.4. REDUCTION AND RECURRENCES. 7

Theorem:

Let p(z) be the characteristic polynomial of the recurrence
() po + pif.-I + ... + pkfn-k = 0; for n > k
with constant coefficients pi. Let the roots of p, over the complex numbers, be ri, i - 1,... m, each
with multiplicity q. Then all solutions of (*) are given by

i=1 3=0

where the ci are arbitrary constants.

If the given linear recurrence relation (with constant coefficients) is inhomogene *. first try to
derive a homogeneous recurrence using appropriate multipliers, and then apply the hod discussed
above. A more formal treatment can be found in [Lue8O].

1.4.3. Generating Functions.

For a sequence (f,,),> o, its generating function F(z) is defined as

F(z)= f.".

Just using calculus, we can establish the following table:

generating function n-th element of the corresponding sequence

cF cf
F+G A +gn

ItF. -. fig.-,
zkF if n < k then 0 else f1_&
W(A/( - Z) i=o/

foF(t)dt if. = 0 then 0 else f,,_/n

F(cz) C"f,,

Hence, if we put
F(z) = 2"z" - 1 2--

(z) n n Z
ft>O Z2

we obtain
n i

F(z). 0(z) ----(1 - z)'(1 - 2z) - E (n -i)2Y'.

Decomposing z/((t - z)'(1 - 2z)) into partial fractions we get

z -2 z 2
(I - z)2(1 - 2z) -I ' .Z( - z)' + I-2z'



8 1. INTRODUCTION

and thus the table above provides the answer

(n - i)2 2n + --n- 2.

1.4.4. Domain and Range Transformations.

A real-valued sequence (f,,),>o is a mapping from N to the reals. Thus a transformation on the
values of the sequence is called a range Iransformation and a transformation on the indices a domain
transformation. We first show an example of a range transformation. Suppcse we are to solve the
recurrence

fI =n-1 f,-2, for n > 2,
f,=2, fo=1.

If we let
g. = log f,

we may rewrite the recurrence as

g, =gn- + g,,-, for n > 2,
g,=1, go=0.

For this recurrence, we know the solution (see 1.4.2.; g, is the n-th Fibonacci number F,) and substituting
back yields

f, - .

A domain transformation is conveniently used in the following example. Let

fn =3f./2 + n, for n =2k > 1,

Here we substitute the index and define

gk f2h,

from which we get the following secondary recurrence for the gA:

gk = 3 g-1 + 2A, for k > 1,

go =1,

which can be solved with methods discussed earlier. We obtain gk, 3 1+1 - 2k+1, and therefore

f = 3n'*g3 - 2n.

This concludes our discussion of several very useful techniques to solve recurrence relations for
sequences. Additional material can be found for instance in [Mil60,Rei77,Rio58,Rio68].

.?

_____ _____ _____



Chapter 2

Higher Level Data Structures

2.1. Basic Set Operations.

It is often useful to design algorithms in layers. That is, first the algorithm is described in a high level
way with abstract structures that are described in a fashion that is independent of their implementation.
Then the implementation details of the structures are worked out or discovered in the literature.

It is necessary to talk about the specifications rigorously. To do this, the language of set theory is
used. There are several operations that are often performed on data structures. "lhse involve a, a, a2,....
as data elements and S, S1 , S2,... as sets of data elements. 'he operations are:

1. Member (a, S): is a E S ?
2. Insert (a, S): S+-S U a.
3. Delete (a, S): S+-S - a.
4. Replace (a, a', S): S4-(S - a) U a'.
5. Union (Si, Sj): St-S U Si.
6. Find (a): if a E USi then i such that a E Si otherwise undefined.
If in addition there is a totally ordered universal set which contains all possible data elements, the

following operations make sense.
7. Min (S): if S = 0 then undefined else min{b; b E S}.
8. Max (S): if S = 0 then undefined else nmx{b; b E S}.
9. Split (Si, a, Sj): if a E Si then S,4-{b E S; b > a}; S +-{b E S; b < a}, otherwise undefined.
10. Concatenate (Si, S3-): if max(Si) < min(Sj) then Si+-Si U S. else undefined.
It is ususally necessary to be able to perform several of these operations on the same sets. Some of

these combinations of operations have names and well know implementations.

name supported operations implementations
dictionary member, insert, delete hash table, balanced trees

priority queue insert, delete, min balanced, leftist trees, heap, binomial forest

mergeable heap insert, delete, min, union 2-3 tree, binomial forest, leftist tree
concatenable queue insert, delete, split, concatenate 2-3 tree

Here "balanced tree" means any of several balanced tree schemes, including 2-3 trees, AVL trees,
and RB-trees.



10 2. HjcIIER LEVEL DATA STRUCTURES

2.2. Binomial Queues.

22.1. DeJinitions

Binomial queues are used to implement priority queues and mergeable heaps. These queues are
based on binomial trees. Binomial trees are defined recursively. The smallest one, Bo is a single node.
In general, B. consists of two B.-'s, such that the root of one is made the son of the root of the other.
A picture should help.

o0

B0  BI B2  B3 B,

There are two ways of thinking of binomial trees, depending on whether the sons of the root or the
longest path from the root to a leaf is being concentrated on. This path is called the handle. There is )
one tree of each size on the handle. Again a picture should help.

Handle XL

BBo

Bo

A binomial tree has the following properties:

height(Bn) n



2.2. BINOMIAL QUEUES. 11

th ere are (ni) nodes at depth k

We have seen how to have a number of nodes in a tree that is a power of 2. It is necessary to allow
structures with an arbitrary number of nodes, n. Consider the binary expansion of n, n = b.2. Then
the binomial forest, ,, of n nodes, includes a Bi if and only if bi = 1.

A binomial queue is a binomial forest with a key, Ki attached to every node, i, so that the "heap
condition" is satisfied. The "heap condition" states that if node j is a descendent of node i then
Ki < Ki.

2.2.2. Union.

Now it is necessary to consider how the operations are implemented. First consider the operation of
union. That is, there arc two forests, F and /, that need to be merged. There are two cases to consider:
a) If i and j are powers of 2 then if i 74 j the result is simply the two trees. Otherwise, the two trees

must be joined. This is done by having the root with the smaller key become the father of the other
root.

b) In general, a process like that of binary addition is needed. Each size of tree from smallest to largest
is considered. Sometimes there is a side tree called the carry present. Initially it is absent. For
any size there are from zero to three trees present, possibly a carry and possibly one tree from each
forest. If there are zero trees present then there is no tree of that size in the result and no carry for
the next stage. If there is exactly one tree present, that tree is present in the result and there is no
carry. If two trees are present then they are merged as in case (a) to form the carry. There is no.
tree of that size present in the answer. If three trees are present, then two arc merged to form the
carry and the third is present in the answer. The cost of this operation is bounded by the number
of trees in the forests. Therefore the cost of union(Fi, Fj) is O(log(i) + log(j)).

2.2.3. Insertion.

( /The operation of insertion is conceptually the same as union with a one element forest. There are,
however, subtleties to the analysis of the cost that make it worth while to be considered separately. Since
one of the forests consists of one node, once the chain of carries stops, the rest of the remaining forest
can be added in constant time. Therefore, the cost of adding n nodes to a binomial queue is O(n + c),
where c is the number of trees merged. Each edge in the forest represents the fact that two trees have
been merged. The number of edges in F,,, is m - w(m), where w(m) is the number of l's in the binary
representation of m and the number of trees in F,. Therefore c = (m + n- w(m + n))- (m -w(rn)) =
n + (w(m + n) - w(m)). Since 0 < w(j) < log(j), c < n + log(n + m). Therefore, the cost of doing
n insertions into an m node forest is O(n + log(n + m))

2.2.4. Min.

To find the smallest element in a forest, it is necessary to look at the root of each tree to find the
smallest. There are w(n) =O(Iog(n)) of these.

2.2.5. Deletion.

The deletion operation is the most complicated. The node that is to be deleted is in some tree,
B,. The deletion operation consists of somehow decomposing this tree into a forest consisting of the
node to be deleted and one tree of each smaller size. This forest is then merged with the original forest
with RI? deleted. When considering the decomposition of Hi, there are two cases, either the node to be
removed is the root or it is not. If the node is the root, then the second way of looking at binomial trees
determines the decomposition. If the node to be deleted is not the root it is a member of some Bi on



12 2. HIGHER LEVEL DATA STRUCTURES

the handle. The trees below B on the handle form a B,. That tree and the trees a6ove B are part of
the decomposition. The trees smaller than B, in the decomposition are found by recursively deleting the
node from B.. Each tree can be found in unit time. Therefore, the time to delete a node from F,, is
O(log(n)). Note that for this to be done the node must first be found. A dictionary is useful for doing

The details of how to represent binomial trees are covered in the homework. For an extended
discussion, also see [Bro7SJ.

Some applications of binomial queues include scheduling, discrete simulation, sorting, optimal code
construction, shortest path algorithms, minimum cost spanning tree algorithms. Binomial trees are
important in a linear median algorithm and other places.

It



Chapter 3

Selection - the Median Problem

Suppose we are given a totally ordered universe (U, <) and we want to find, for some i with
I < i < n, the i-th largest element of a given finite S C U with n elements. For i = 1, this is the
problem of finding the minimum (resp., maximum, if we reverse the order) of a set. It can (and in sports
usually is) solved by an knock oul tournament, and it is not hard to see that this method minimizes the
number of comparisons (i.e., the number of "matches"). However. when it comes to determining the
vice champion, this need not be, by any means, the loser of the final match. As a matter of fact (though
this is not commonly realized in the world of sports), it might be any one of the participants in the
tournament who was thrown out by losing against the final winner (of course, we assume here transitivity
of the "is a better player than" relation). And it was also Lis apparent injustice which might have led to
the formulation of the first selection algorithm [Car83 (for i =A 1, n).

Another variant of the selection problem which deserves specific mentioning is the so-called median
problem. It calls for the determination of the fn/2-th largest element and is of practical importance
whenever we want to split a set into two equal sized parts such that the elements in the one part are all
smaller and those in the other all bigger than the splitting element (we may assume here without loss of
generality that n is odd).

In the sequel, we are going to discuss two algorithms for selection problems. For the analysis of
these algorithms, we choose to take the number of comparisons made by the algorithm between elements
of the set, as the dominant part of the overall complexity. In these terms, both algorithms turn out to be
of linear complexity.

3.1. The Blum-Floyd-Pratt-Rivest-l'arjan Selection Algorithm.

Let m be a small, odd number (say, 5 < m < 15), and consider the following algorithm for
selecting the i-th smallest element of S for any i between I and n.

Linear Selection Algorithm I:

1. Divide S into rn/mi subsets, [n/mi of them with m elements.
2. Sort these Ln/m] subsets; if Ln/mJ is even, als,, sort the remaining subset minus one elemenL Let S'

4 be the set of the medians of these sorted subsets.
3. Determine recursively the rIS'I/21-th element of S', call it s.
4. Divide S into S,:= {a' E S; 8' < s} and S2 := {a' E S; a' > a}

(note that IS, I, IS2 I > n/4 if we assume, and we do this without loss of generality, that n > 3m - 1).
5. If S, > i determine recursively the i-smallest element of SL;

if S2 > n - i recursively determine the i - ISI - 1-smallest element of S;
otherwise return s.

The worst-case complexity T of this algorithm (measured in number of comparisons) hence is

-. - -. -.



14 3. SELECTION - THE MEDIAN PROBLEM

bounded by
T(n) <_ T(un/ml) + T([3n/4J) + rn/ml • C. + Ln/2J + m,

where Cm is the number of comparisons needed to sort m elements (using, say, the Ford-Johnson sorting
algorithm). By induction we obtain

T(n) _< cnn with c. s 20.

For further details see [BFP73].

3.2. The Schoohage-Paterson-Pippenger Median Algorithm.

This algorithm is the best algorithm known so far with respect to its asymptotic complexity (expressed
in number of comparisons used by the algorithm). It makes essential use of binomial trees. It is also of
interest because it is not recursive (based on a divide-and-conquer approach) but rather is best described
as a pipelined algorithm.

Definition:

Let Sk denote the partial order consisting of 2k + I elements k of which are smaller, and k of which
are bigger than the remaining element, which is called the center of Sk.

We are now going to define a special variant of binomial trees with one distinguished node, called
the center. The nodes of the trees are elements from a totally ordered universe.

Definition:

(a) The tree Ho is a singleton node, which is also its center.
(b) The tree H, is obtained by combining two HO's by an edge; its center is the smaller of the Ho's.
(c) The tree H2 is obtained by combining two Hi's by an edge: its center is the bigger of the centers I

of the two HI's.
(d) The tree H,. for h > 0, is obtained by combining two H2h_1 's by an edge; its center is the smaller

of the centers of the two constituents.
(e) The tree H1,+1, for h > 0, is obtained by combining two H,,'s by an edge; its center is the bigger

of the centers of the two constituent trees.
(Note that there is an irregularity in the definition of the Hi just for small i; HO, H 3, H 5 , ... , Hs,+, ....

are of the same "variety", and so are HI,H1, H4,... ,H,,.)

We now state those properties of the Hh which will be needed in the algorithm, in the following

Decomposition Lemma:.

(a) Ilk has 21 nodes, exactly 2
1h - 1 comparisons are needed to produce it (because it is a treel).

(b) For h > 1, Ht, can be decomposed into
-its center,
-a (disjoint) collection (Ho, H3, 11,...,Hsh-.) of subtrees all of whose centers are above the
center of Hm,, and
-a collection (Hi,Ht,H4 ,..., HU,-} of subtrees all of whose centers are below the center of
H24.

(c) H, can be split such that the component of the center contains exactly 21'/1J elements all at or
a) above the center if r = 0, 3, 5, 7, ....
P) below the center ifr = 1,2,4,6, ....

by removing at most 1 . 2L./IJ edges.

I(



3.2. THE SCHONHAGE-PATERgON-PIPPENGER MEDIAN ALGORITHM. 15

(d) If k < 21 - I then H21 can be decomposed such that the -omponent of the center contains 2k + I
elements, k of which are bigger, and k of which are smaller than the center (i.e., the component
contains S); for this, at most 3k + 2h edges have to be cut, and the remaining components are of
the form H,, a < 2h.

The proof of this Decomposition Lemma is left as a homework problem. For further details, also
see [SPP76J.

Now suppose that we have a chain of t pairwise disjoint Se's whose nodes are taken from some set
with n elements, and let r be the number of leftover elements (i.e., n = (2k + l)t + r). Also assume
that the centers of the Sh's appear in the chain in increasing order, and let top (bot) be the last (first)
center in the chain. Under the assumption that r is less than t - 1, we can then conclude that top is
known to be bigger than

LI n~f+l 1) n-I
k+(t-1)(k +1) > k + (k +1)(2k+2 ) 2

Hence top and the elements known to be bigger than top are also known to be bigger than the median
of the n elcment set. A corresponding situation applies to bot. Thus, 2(k + 1) elements can be discarded
from the set and the median determined as the median of the remainder.

The (basic version of the) SPP Median Algorithm is shown in the diagram on the next page. There,
n is the number of elements for which we search the median, k is set to Ln'/'j, and h is chosen such
that 2h- I < k < 2 h.

The algorithm maintains two pools, one of which contains H,'s, the other just singletons (the two
pools actually could be merged; for subsequent improvements of the basic algorithm, it is however
convenient to have them separate). Initially all elements of the set are in this second pool. The first
process in the algorithm recursively forms H2 h-trees, whenever there is enough building material available
in the two pools. This means in particular that, whenever there are two II.'s with the same a in the pools,
they are combined to produce an H.,I. Whenever an 112h gets produced by this formation process,
it is decomposed into a component containing Sk and various l.'s (which are being recycled in their
pool) according to the Decomposition Lemma stated above. The S-component is then inserted into a

, I chain of such components in a way such that their centers are in increasing order. Whenever none of
the processes discussed so far can run any more, one of two other processes is started, depending on the
relation between the length t of the Sk-chain and the number r of elements which are leftover elements
outside of the chain. If t - 1 > r then, as argued above, 2k + 2 extremal elements in the chain can be
discarded because they cannot possibly be the median, and as half of them lie below and half of them
lie above the original median, we are still left with determining the median of the remaining elements. If
t - 1 < r the following analysis will show that the number of elements remaining in the whole process
is small enough so we can sort them and thus determine their median.

Analysis of the SPP Median Algorithm.

Consider the following quantities:

r the number of leftover elements (elements which are stuck in the recursive fHh formation process
respectively its input pools). Note that at most one I. can be left over for every s < 2h, and as
H1. contains 21 elements, we have

r < 22' - 1.

R :-q the number of elements to be sorted in the final step of the algorithm; these are the elements in
the chain when this last step is invoked, and the leftover elements. As t < r + 1 in this case, we
have

R (2k + 1)t + i < 22'(2k + 1) + 22' - 1.



16 3. SELECTION - THE MEDIAN PROBLEM

Spool of pool of singletons 46
H, < 2h (initially n)

t recursively form H2&1,

u-. g/
(using the biggest H.'s possible)

decompose H21, into component
containing Sk, and H.'s;

recycle the H.'s

insert Sk-component into chain with

centers sorted in increasing order I

chain of SkSf

if all prcesses above stalled, andIf a-l. pr
discard extremal (2k + 2) elements

sort all remaining elements; return remainder of these two S's

determine their median to the singleton reservoir

- Diagram of the basic SPP Median Algorithm -



3.3. A LOWER BOUND FOR TilE MEDIAN PROBLEM. 17

m:= the total number of S-components produced during the whole process. As, whenever 2k + 2
elements are discarded from the process, two Sk-components are destroyed, m equals twice the
number of such discarding actions plus the number i of Sk-components left at Lhe end. Hence,

n-R n-R
m=2.--+t= !-+t.

2k+2 k+l

We are now able to count T(,). the total number of comparisons made by the algorithm. As
the algorithm always preserves acyclicity of all graphs involved. T(n) is equal to the number of edges
generated during the algorithm. And this number in turn is bounded above by

the number of edges in all S-components
plus the total number of edges removed in the decomposition process
plus the number of edges left at the end in the pools of the H2h-formation process,
plus the total number of comparisons for the chain insertion process,
plus the number of comparisons for the final sorting process.

Together this yields

n-R
T(,,) < ( + t)2k + 3k + 2h + log(n/(2k + 1))] + RlogR + r.

As k = Ln/4]. and 2 -I < k < 2h, we have

t -=O(k');
R =O(k3 ), and hence

T(n) _< 5n + o(n).

Some improvements are possible for this basic version of the algorithm. Their description would be
very laborious, and the reader is referred to |SPF76) for the details. Implementing these changes, we
obtain a median algorithm whose asymptotic complexity in terms of number of comparisons is 3n + o(n),
the best known upper bound so far.

Theorem:

The median of a set of n elements can be determined using at most 3n + o(n) comparisons.

3.3. A Lower Bound For the Median Problem.

We have seen that it is possible to compute the median of an n-element set in linear time. The
question of how many comparisions are needed to do this naturally arises. The best published result of
7/4n - o(n) is due to Pratt and F. Yao [PFY73I. Here a weaker result due t Blum, Floyd, Rivest, Pratt,
and Taijan [BFP73] will be discussed.

Theorem:

Finding the median of an n element set requires at least f3i,,/21 - 2 comparisons.

Proof: The proof of this theorem uses what is called an adversary argument. An algorithm A asks
questions of the form: "is x < VT' The adversary, B, gives answers so that all of its answers are
consistent and A has to ask "many" questions.

It is necessary to describe B in greater detail. Suppose n is odd and m := in/21. R maintains
three sets of elements: U, L, G. B decides that all of the elements in G are greater than the median and



18 3.. SELECTION - THE MEDIAN PROBLEM

that all of the elements of L are less than the median. The elements of U are candidates for being the
median. B also ensures that if g E G, l E L, and u C U then g > u >.

Basic observation:
As long as ILI, IGl < rn/21 it is consistent for B to assume that the median is in U. If in addition,

there are two incomparable elements in U. A has cannot have determined the median yet.
Thus, B will try to keep L and G small and U big. For simplicity, however, B will keep in U only

those elements which have been compared to at most one other element currently in U. If this condition
is violated due to a question from A, appropriate elements are removed from U and put into L or G so
as to restore this condition. B always answers such questions so that there are never three elements of U,
a, b, c such that a is known to be less than b and b is known to be less than c.

First phase of the adversary algorithm.
Initially, L = G = 0, and U contains all n elements. If A asks a question "Is z < y?", and z and y

are not both in U B answers it so that it is consistent and the invariance L" < ",..., U, .... " < ",... , G
is maintained. From B's point of view this is a redundant comparison. If z and y are both in U then B
answers the question depending on which of z and y, if any, have been compared and what the result
was. The six cases are drawn below. A line between two elements indicates that the higher one is known
by A to be greater than the lower one. A dotted line represents the question A is asking.

state of z,t B's action number of pairs UIU ILl IGI

1) z. ---- 01 +1 -- !

2) -1 - +1
3) z- - -- IVw 4 -- L -1 -1 "+1

Z6) -- L z11

4) ,- -1 - +1

5) .. .. i Ly- f -1 -1 +1 -

6) I° L --fI7 -1 -1 +1 1



3.4. REFERENCES. 19

If C is the number of comparisons made so far, and P is the number of pairs in U, then it is obvious
by induction that :

C-P+2UI > 2n.

Second phase of the adversary algoritn.

The first phase of the adversary algorithm stops if either ILl = [n/2J, IGI = [n/2j, or there are not
two incomparable elements in U. Suppose the latter happens. Then UI < 2, so C - P + 2(2) _> 2n.
This means that C > 2n - 3.

If. on the other hand, L or G gets too large, B enters a second phase. Suppose without loss of
generality, that it was L that became to big. B will then force A to find the minimum element of U.
which will be the median. This phase will require an additional IUI - P- I comparisons, because iUI - 1
comparisions are ncessary to find the minimum of jUI elements and at most P of the comparisions have
been done. Rearranging the invariant,

C > 2n + P- 2UI

This means that the total number of comparisons for both phases satisfies

C + jul - P - 1 > 2n + P - 2JUj + jul - P - 1 = 2n - jUI - 1.

Siftce L = [n/2J, U < 1n/21. Therefore,
C + II-P-1 >_ [!n--2

which completes the proof. I + P

3.4. References.

Expected time bounds are discussed in [FIR75]. Reiser [Rei78] discusses the selection problem when
the elements have weights. Further lower bounds for the selection problem are proven in [Hya76].

.1



Chapter 4

Minimum Spanning Trees

4.1. A Schema for Minimum Spanning Free Algorithms.

Let G = (V, E) be a connected undirected graph with IV I n nodes and IE I e edges, and let

c(v, w) > 0 be a cost value attached to (v, w) E E.

Definition:

A minimum spanning tree for (G, c) is any tree T = (V, E') with the same node set as G, and with
edge set E' C E such that , c(v, w) is minimum.

First basic observation:
Let V' C V, and let (v, w) be an edge in E, such that v E V' and w E V - V' and such that

c(v, w) is minimum with respect to all edges having the first property. Then some minimum spanning
tree for (G, c) contains (v, to).

Second basic observation:
Let (v, wi) be an edge on some cycle- C in G such that c(v, w) is maximum for all the edges on C.

Then some minimum spanning tree for (G, c) does not contain (v, w).
The proof of these two properties is left as an easy exercise. Though both of them can be used to

construct efficient algorithms for finding minimum spanning trees, we shall, in the sequel, only employ
the first. From it, we can immediately derive the following very general frame for minimum spanning
tree algorithms:

1. Iniaialize a forest F of n trees, each of them a singleton node from V.

Repeat as long as F has more than one tree:

2. select a tree T from F;
3. find an edge (v, w) with minimal c(v, w) such that v is in T and to is
not; let T' be to's tree;

4. update F by combining T, T', and (v, to) into a single tree.

There are a number of possibilities to implement the forest F. to choose criteria for the selection of
a tree T in step 2, and to facilitate-the search operations in step 3. We are going to discuss two solutions.
The first one is very simple and easy to program, whereas the second has an asymptotic complexity which
is the best known so far for the general case (better upper bounds are known if we restrict the class of
graphs being considered, e.g., to planar graphs).



4.3. A BETTER MINIMUM SPANNING TREE ALGORITHM. 21

4.2. Kruskal's Algorithm.

In Kruskal's algorithm [Kru56], the edges are first sorted according to increasing cost, and then
searched in this order. Whenever an edge is encountered which connects two diffcrent trees, these two
trees are combined into one. For this last operation, a simple weighted union algorithm is used. We
assume now for conmcnience that the nodes of the graph G are just the integers between I and n.

algorithm MSTI;
begin

generate a list L containing the edges of C sorted according to nondecreasing cost value;
initialize an in-forest F, with the i-th tree T] consisting of node i, for I < i < n
co an in-tree is a rooted tree with all edges pointing towards the root oc;
initialize MST to the empty tree;
for i := 1 to length(L) do
begin

(v,w): = i-th element of L;
x j where j such that v is a node in the tree T of F;
y j where j such that w is a node in the tree Tj of 1';
if z - y then
begin

MST: MSTU{(v,w)};
if 17', I T I then UNION(T,,7) co making the root of T, a new son of the root of T, oc
else UNION(T,T,)

end
end

end MST1.

Time complexity analysis for MSTI:

1. The initial sorting of the edges takes time O(e loge) = 9(e log n).
I 2. The UNION operations can obviously be done each in time 0(0).

In order to analyse the complexity of the FINI) operations which determine the tree some node is
currently in. we notice that at all time steps and for all trees 7' in the forest F, hcight(T) ! logITI .

This is certainly true right after the initialization of F. When two trees 7' and 7" are combined (call the
result for the moment U and assume without loss of generality that ITI K 1"7"1), we have

height(T") < max{height(T'), height(T) + 1} <_ nax{logIT' l, 1 + logITI}
<_log(ITI + IT') = logIT".

3. It follows hence that the FIND operations can be done in time 0(log n) each.

Together, we obtain e(e log n) as an upper and also as a worst-case lower bound for the running
time of MST1.

4.3. A Better Minimum Spanning Tree Algorithm.

We are able to improve on the complexity of the previous algorithm by applying some care in the
selection of the tree in step 2 of the general algorithm. The selection rule which we are going to discuss
is called uniform selection (used by Sollin, see 111GH561), and is specified as follows:

Initially, all of the n trees (each consisting of a singleton node) are placed on a queue.
Also, the stage of each of these trees is defined to be 0.

In step 2 of the general algorithm, the tree 7' at the front end of the queue is selectea (it will always have
a minimal stage among all the trees in the queue). When it is combined with some tree T' in the



22 4. MINIMUM SPANNING TREES

queue, both T and T' are removed from the queue, and the combined tree is inserted at the end of the
queue. Its stage is defined to be one more than the stage of T (which is the minimum of the stages of
T and T').

Basic observations about uniform selection:
a) The stage of any tree in the queue is < log n.
b) At any time step of the algorithm, all trees in the queue with minimal stage are pairwise disjoint.

1he first fact comes from the observation that, in order to create an additional tree of stage i + 1, it
takes two trees of stage i. For the second property, one can easily prove by induction that at every time
step the trees in the queue form a partition of the node set of the graph G.

[An alternative tree selection rule is called smallest tree selection. Under it, the trees are also
organized in a queue, but at every step a tree with a minimal number of nodes is chosen. In an efficient
implementation, one has to take care that such a minimal size tree can be found quickly, and that the
combined tree can easily be reinserted. It would also be possible to use this selection rule in the following
algorithm, but a somewhat bigger programming effort would result.]

For step 3 of the general algorithm, we implement the set of edges incident to some tree T (which
in turn is represented by its set of nodes) as a collection of ordered subsets of size < k, where k will
be specified later. Specifically, if there are m such edges, we divide them into fm/k] subsets, Lm/kj of
them of size k, and sort all these subsets in order of nondecreasing cost. We also attach to the head of
each subset a pointer to the tree to which it belongs, and a list pointer pointing to the smallest cost edge
which has not yet been searched. Furthermore we assume that from every edge (v, w) there are pointers
to the head of its subset and to its twin representation (w, v) (occurring in a list attached to w's tree).

algorithm MST2;
begin

procedure combine-upto..stage(s);
begin

while stage of the first tree in the tree queue is < s and the tree queue has length > 2 do
begin

let T be the first tree in the queue;
search each of T'; edge lists in the direction of increasing cost, starting in each list at the smallest
edge not yet searched, '%nd deleting all edges until one is found that connects 7' to a different tree,
say T';
add this edge to MST:
combine T's and T"s edge lists by updating the tree pointers in T's lists so that they point to T';
remove T and T' form the queue;
insert the combined tree at the end of the queue, and
set its stage to the stage of T plus one

end
end combine;

MST 0;
initialize the tree queue: each tree consists of a ingleton node and is assigned stage 0;
for every such tree, represent the set of incident edges by a collection of lists of size I;

* combine..upto.stage(log log log n);
* for every tree in the tree queue, reinitialize the collection of edge lists into ordered lists of size log log n;

combine.upto.stage(log log i);
for. every tree in the tree queue, rcinitialize the collection of edge lists into ordered lists of size log n;
combine-upto.stage(log n)
co by the first basic observation, this implies that only one tree is left in the tree queue oc

end MS12.



4.3. A BETTER MINIMUM SPANNING TREE AI.GORIriIM. 23

Time complexity analysis for AMST2:

Define stage s of the algorithm to be tile time span during which the trees taken from the front end
of the tree queue have stage a, and note that
1. if the edge lists are (re)initializcd right before stage s, then during stage s there are at most n/24

trees in the tree queue, and hence at most 2e/k + n/2' cdgc lists for all trees together:
2. the time for executing stage s' > s (without intermediate reinitialization) is

o(, + n+ 1),),
k 28+l~)

where D,. is the number of edges deleted during stage s'. because of the second basic property
stated above, the trees which are in the tree queue at the beginning of stage s' are all pairwise
disjoint, and all edge lists attached to them are searched at most once during stage ', because of
the uniform selection rule. Also, due to the chosen implementation, the tree(s) to which an edge is
incident can be found in time 0(1), and . time to combine the tree 7' (selected from the front
end of the queue) with some other tree 7' ,: proportional to the number of edge lists attached to
T;

3. the time for (re)initializing the edge lists to ordered lists of size k is bounded by 0(e log k). Hence,
4. the total time to (re)initialize and then execute from stage .9 to stage .2 is bounded by

0(,elog k + -+ -)(32 - 1-3 + 1) + e)

where the first term accounts for the initialization, the second for the UNION operations, and the
second and third together for the FIND, MIN and edge deletion operations.

S. Of the three phases of algorithm MST2. the third phase (between stages log log n and log n produces
the dominating contribution. Substitution of its parameters in the above estimate yields I

0(e log logn + (e/ log n + n/21o1 1"')(log n - log log n) + e).
~~Theorem: ..

Algorithm MST2 finds a minimum spanning tree for an arbitrary connected undirected graph with
weighted edges with.'n time bounded by 0(c log log n).

T[he steps marked (*) in Algorithm MST2 cotuld actually be omitted without affiecting the growth rate of
its time complexity (produIcing, however, a bigger constant factor in the above estimate). Algorithm MST2
was originally discussed in [Ch'1761. This reference also presents a number of alternative implementations
and more efficient algorithms for special stibcases of the minimum spanning tree problem. The first
solution of time complexity O(e log log n) for the general problem was given in [AYa75].

______ ____._



Chapter 5

Path Compression

5.1. 'eic UNION-FIND Problem.

For most of the groups of operations on sets which we have seen so far, time O(log n) per operation
is required in the worst case. If we consider only the two operations UNION and FIND we can do better
using a different tree structure (namely, in-trees).

The UNION-FIND algorithm has numerous applications, e.g. for the following problems: determina-
tion and verification of minimum spanning trees, depth determination, closure of equivalence relations,
dominators in flow graphs, and many others [Tar79].

In general, we are given a sequence of n intermixed UNION and FIND operations as defined in
Section 2. We may assume here without loss of generality that the universal set is 11,..., n}, and the
set names are also elements of {1..., n}. Also note that the argument sets of the UNION operations
are always disjoint.

The basic idea is to construct an in-tree (i.e., the edges point towards the root of the tree) for each set
made up of nodes for each element in the set. Each node is a pair consisting of an integer representing I
the element, and a pointer to another pair (its father in the tree). For the root of the tree, this pointer is
assumed to be nil. Without loss of generality, the root cf the tree is identified with the name of the set.
The set operations are implemented as follows:
- FIND(i): from i's node, follow the chain of pointers until the next pointer is a nil-pointer; its node is

the name of i's set.
- UNION(namel , name): if the two nodes are different, make the second node a new son of the first

node (i.e., the nil-pointer of name2 is updated to point to name,).
For this implementation the following sequence obviously is a bad case:

UNION(2, 1);UNION(3, 2);... ;UNION(n, n - 1); n-times FIND(I);
From it we can immediately derive the following

Theorem:

The above implementation of UNION-FIND.has time complexity O(n 2).

5.2. The Weighting Heuristic.

There are two heuristics which can be used to improve the basic algorithm. The first is the weighting
heuristic and is motivated by the desire to keep the trees balanced. We add to each root a counter which
gives the number of nodes in the tree. The weighting heuristic states that when two trees arc joined the
root of the one with the smaller node count is made a new son of the root of the other. (in case of a
draw, we still make the root of the second tree a new son of the root of the first tree.) As we have proved



5.4. UPPER BOUNDS FOR UNION-FIND WITH PATHI COMPRESSION. 25

already in the analysis of the minimum spanning tree algorithm MSTI (Kruskal's algorithm. Section 4.2)
the height of a tree with n nodes constructed according to this weighting heuristic is bounded by log n.
Hence the FIND operations require time at most O(logn) each while each UNION can still be done in
constant time. On the other hand, let 7k = 2' be a power of 2. Then the sequence

UNION(2, 1);UNION(4, 3); ... ;UNION(n, n - 1);
UNION(4,2);UNION(8,6); ... ;UNION(n,n- 2);

UNION(n,2 )

n-times FIND(l);

clearly requires time 0(n log n). Hence we obtain the

Theorem:

The UNION-FINI) algorithm with weighting heuristic has time complexity O(n log n).

5.3. The Path Compression Heuristic.

The second heuristic to improve the basic UNION-FIND algorithm is called path compression or
collapsing. It is motivated by the observation that in the bad case example for the basic algorithm n
FIND(t) operations are performed each requiring time 0(n). After the first such FIND operation, the
structure should be modified in such a way that subsequent FIND operations for the same element are
sped up. This can be done by changing all pointers encountered in a FIND operation on the way up
to the root, to point to that root. We can use a stack to store all intermediate nodes on the FIND path, I
or we can even use these pointer cells themselves (and some constant amount of additional memory) toit keep track of the FIND path (details to be worked out as a homework assignment).

It is also left as an exercise to construct a special sequence of UNION's and FIND's (here the
UNION's do not employ the weighting heuristic, rather the root of the second tree is always made a son
of the root of the first tree!) which requires time 0(n log n). Such a sequence is not hard to find if one
has in mind the two basic ways to parse binomial trees.

5.4. Upper Bounds for UNION-FIND with Path Compression.

The derivation of good upper bounds fi)r UNION-FIND algorithms which use the path compression
heuristic requires some more effort. Assume that starting from singleton sets n - I UNION's are
performed, and m > n (intermixed) FINI)S's. Let T be the tree which would have been constructed by
the UNION operations if there had been no intermixed FIND's. For every element v in the universal set
(which without loss of generality we take to be the set {I,..., n} and whose elements we also identify
with the nodes in the forest maintained by the UNION-FIND algorithm), let h(v) be its height in T.
(Note: this is a static quantity, solely depending on the order of the UNION's.)

Basic observations:'
a) In any FIND path (in the original sequence with UNION's and FIND's intermixed) v1 , -- -

-- v,, we have
h(,,,) < hv)< ... < h(,,,).

b) Let v - w be an edge in a FIND path, w not equal to the root (i.e., w not the last node on
the FIND path), and let v -- w' be the edge from v after the path compression due to the FINDX
operation. Then h(w') > h(w).

I- I



26 5. PATH COMPRESSION

The first of these facts can be seen as follows. Assume we have a UNION(TI, T2) in the original
sequence. Let r, (resp.. r2) be the root ofT 1 (resp. T2) at this moment. Then we have in the rearrangend
sequence, and we may assume this by induction, a UNION(TI, TI) where T (resp.. T) contains the
same elements as T, (resp., T2), and is in fact a rearrangement of T1 (resp., 72) with the same root ri
(resp., r2). In the rearranged sequence, r, becomes a father of r2, and hence h(ri) > h(r2). Thus the
same holds for the edge r2 - r, in a FIND path. Induction on the number of edges now completes the
argument.

The second fact is an immediate consequence of the definition of path compression and the first fact.

5.4.1. Path Compression without Weighting Heuristic.

We divide the elements into disjoint groups and account for the cost of a FIND path by charging
part of it to the FIND operation and part of it to the nodes on the path. Note that the cost of a FIND
is roughly equal to the length of the FIND path.

Let the group C, of elements consist of those nodes having between (bounds included) 2'-1 and
2i - 1 descendents in T, for i = 1,..., flog n].

For every FIND path vi -- v2 -+ ... --+ v, we charge
a) the last edge to the FIND operation;
b) an edge vA --* Vk+1 with vA and vk+ in the same group to v"+,:

c) any other edge to the FIND operation.
As there are only O(log n) groups, every FIND operation is charged at most O(log n). Now assume

that v, -+ VA+1 and v, - vu+, are (different) FIND path edges both charged to Vk+1 (in different
FIND's). Then vk, Vk., and vk+l are all in the same group Ci. It follows, however, from the definition of
the path compression heuristic that (in T) the subtrees rooted at vA and vh, must be disjoint, and hence
v:+t would have at least 2 -2 - 1 descendents, contradicting the definition of group C1 . Hence every
node is charged only O(1). Together with the matching lower bound (which is given as a homework
problem) we have

Theorem:

The UNION-FIND algorithm with path compression but without weighting heuristic requires
0(n log n) time.

5.4.2. Path Compression and Weighted UNION.

We use a simiilr approach as before, with a different division into groups.
Consider the functions

,(n) "2' (with n 2's) (F(O) := 0)

and
log ,0 ifn< 1;
logn I + log *([logn1) otherwise.

(Note: log *F(n) -n.)

Let now group Ci consist of those nodes z having i - log *(h(m)), i.e.,

F(i - 1) < h(x) _< F(i); for i = I,, log*n,

and C0 of the nodes with height zero.
"lbe cost for every FIND path is charged in cases a) and c) as above whereas b) is replaced by

V9) an edge vA --+ VA+l with V and vk+t in the same group is charged to vt. Hence every FIND
operation is attributed a cost of at most O(log *n). The charge to every vA in C,, i > 0, is at most



5.4. UPPER BOUNDS FOR UNION-FIND WITH PATH COMPRESSION. 27

F(i) - F(i - 1) because of the second basic observation made above. As there are at most n/2h
vertices in T with h(z) = h (as we have shown for the weighted UNION operation in 4.2) we have

P0 n n n n

1C4 : - 2 -( F--"

Hence all vertices in C, are charged together at most 0(n). Summing up all the pieces we obtain

the

Theorem:

T'he UNION-FIND algorithm with path compression and weighted UNION requires O(n log *n)
time.

By a much more sophisticated analysis, which uses a multilevel subdivision into groups (we only used
one level), one can improve the upper bound for this variant of the UNION-FIND algorithm to

0(ma(m, n-))

where a(m, n) is closely related to the "inverse" of Ackermann's function A(m, n) with

A(m, O) = I;
A(O,n) = 2n + 1;

A(m+1,n+1) =A(m,A(m+1,n)); for m,n > 0.

Ackermann's function grows faster than any primitive recursive function. As a consequence, a(m, n) < 6
for all "possible" values of m and n. For more details, we refer the reader to rl'ar75]. In [Tar771, a
matching lower bound for the UNION-FIND problem is proven for a very general class of machines.
Finally, [Tar79] gives some extensions of path compression to problems which require the computation of
certain functions along FIND paths. However, for the lowest common ancestor problem discussed there
also compare [Har80.

~I



Chapter 6

Pattern Matching in Strings

6.1. Pattern Matching Problems.

We are interested in finding interesting patterns in strings of characters. There are many ways that
this problem can be made more rigorous, but first some definitions. Let E be some finite alphabet. There
are two strings of interest, the text, text, and the pattern, pat. 1hc following notations are used:

text --= tj... t,., ti E E:

text,1  = t... t

pat p-- P... r-ft, pi E E
pat(') - pri)i

We are interested in the following problems:
1. Find the first (all) occurrence(s) of pat as a substring in text.
2. Find the first (all) occurrence(s) of any of the patY) as a substring in text.
3. Find the longest common substring(s) of text and pat.
4. For some (each) position, i, in text, find the position(s) k $ i, such that the common prefix of

texti,,, and text ,,u has maximal length. This problem is called "internal matching".
5. For some (each) position, i, in text, find the position(s) k in pat such that the common prefix of

texti,, and patk,, has maximal length. This problem is called "external matching".
6. Problem 2, except that the pat(') are given by a regular expression.

6.2. Sets of Patterns Given by Regular Expressions.

We will consider the last problem first. Let a be a regular expression over E, and

M. =(S, o,f,6)

be a non-deterministic finite state automaton recognizing L. C E. Suppose that M. has the following
properties:
a) M. may contain c-transitions;
b) 16(s, a)l < 2, Va E E U (e};
c) 1.l1< 21a1.

Here the length of the regular expression. lai, is computed by counting one for a symbol from E
that appears and one for each connective including concatenation. It is easy to construct an M, from a
with thesw properties by structural induction.

I:



6.3. AUTOMATA RECOGNIZING SUBSTRINGS. 29

We now compute the sequence Si of sets of states that Ma could be in after having read text1 ,i.
algorithm reg-pat(a,text);
begin

construct Ma = (S, so, f, 6);
for i:=O to n do
begin

if i=O then So := {so} else Si U , 08s ti);
mark all a E Si;
unmark all a E S - Si;
Q: =queue of elements in Si;
while Q is not empty do
begin

take an element, say a, from Q;
add each unmarked a' E 6(s, c) to Si and Q and mark it

end
co we have just closed Si under c-transitions oc;
if f E Si and i > 0 then mark ti with -

co the marked elements arc the the places where an instance of an element of La ends oc
end

end.
It is obvious that exactly every prefix, textl,i of text ending with an underscored ti is in La.
T['he construction of Ma can be done in time 0(jaI). Clearly the running time of the algorithm

reg._pat is bounded by o(njsJ) O naJ)

because in the inner loop, every a E S is put on the queue at most once and I6(s, a) < 2.

Extensions:

If we are looking for a pattern L,. in the middle of text, first replace a by Eat.
How to find the left end(s) of pattern(s), L,, is left as a homework problem.
Better upper bounds can be obtained for some special forms of a. For more information see [KMP77]

and [FiP741.

6.3. Automata Recognizing Substrings.

Consider for now problem 1, that of finding the first (all) occurrence(s) of pat as a substring in text.
This is an instance of the previous problem where the regular expression a is an element of E*. Consider
the skeletal machine". M,.r

di1 ,,clt pat

P3 Pm

80 81 82 8 am.

-ii



3]0 6. PATTERN MATCHING IN STRINGS

Geneml de.
Ml. reads tt,t,. in state so until the first t, p, is encountered. Then, M'P" changes state to

s,. Suppose that after having read text £,k, M0 ot is in state s. This implies that

temtk-+,,k -= pati,, and

teztt-f+Ik 3 pat 4 ,, if j' > j.

Now Mp,* reads tk+. If t+I = pj+ then M' t changes state to s+1 and iterates. Iftk+1 P,+l,
then there can be no complete match at position k - j + 1. That is

text _-j+,k-.j+, 3 pat.

We may therefore try a match at a later position by shifting the pattern sh(j, t%+,) positions to the
right. Sometimes, sh(j, tk+,) can be greater than one, since we know that text +-j3 ,k - pat1 ,. In fact
we can define

sh(j,tk+,) := min{s > O;textk+._j+,,k+ t =pattj_.+t).

s --- [ Pi ... pI-8 p.-+1
P i .. !.+1 ... Pi Pj+1

text [t-*+1 ... tk+s-!+ ... t tk+1

This is always defined since if a - j + 1, textk+2,k+i and pat,o are empty. For M,.,, this
corresponds to mading tk+, and going from state s to state as_.+, if th+, 3 pj+1 . It is possible to
build the shift function into M'.,. obtaining a DFA, dp.t, with O(m) states and O(mIEI) edges.

It turns out that, it takes time O(mIE) time to construct sh, hence

Theorem:

We can determine whether pat is a substring of text in time O(mIaj + n).

If E is large the time to set up the machine might be significant. This leads to the question: is there
ai algorithm that is independent of IEJ?

6.4. The Knuth-Morris-Pratt Pattern Matching Algorithm.

To become independent of IEI, we make Ah independent of E and construct a new machine M,..

sh'(j) := min{sh(j,o);a E E- p+t).

Note that if [Il < 2 the problem is silly. 'lhcreforce

sh'(j) := min(s > 0; pat.+1 ,j = patij-o and p,+i # p,-+i}

If j :_ s then pat,_.. and pat.+,s, are empty and equality holds. If a = j + 1 then both conditions
are vacuously satisfied. This means that 0 < sh'(j) <_ j + 1. If we build sh' into Mp.t, we might, after
going from state &I to state aj,., still have a mismatch pj_.+, 3 tk+1 . In this case it is necessary to
iterate by reducing the state sa_. according to sh'. This gives the following program:
j :=O; k := O;
wMle j < m so k < n do
Whj 0 2n.,, t+, , I+, do



6.5. TI BOYER-MOORK STRING MATCHING ALGORITHM. 31

begin
co andod means that the second operand will not be evaluated unless the first operand is true oc;
j :=j- ah'(j);
k:- k+ 1; j:=j+1;
if j = m then "match encountered"

end.
This is the basic Knuth-Morris-Pratt algorithm. It cat be refined in several ways. For detils s,

[KMP77].
We now want to see how to construct the shift function. The basic obscrvation is that if

ah'(0), sh'(),...,sh'(j - 1) are known, it is easy to compute sh'(j). For the following progT
to computc the shift function, it is useful to recall that

sh'(j) := min{s > 0; patj, -= pato+1 ,. and P,+t 3P p,-,+}
and to consider the following figure:

~S Pt "'" p-..-i P-8 PI-s+1

L P , ... Pp+1 I P 1 p-

The following program computes sh'(j):

co we shift the upper copy of the pattern to the right by whatever amount is appropriate oc
sh'(O) := 0; := 1; j:=1;
while j < m do
begin

while a < j "=ndO d pi 3 p,_. do
a := a + ah'(j - a - 1); 1

if pj+ = p,-..+' then sh'(j) := a + sh'(j - s) else ah'(j) := ; 1
i := i+l

end.
Whenever the inner loop of the algorithm is executed, s increases. But s is boundcu from above by

m + I. '[he variable j increases once each time the outer loop is executed and is bounded from above
by m. Therefore, this algorithm has time complcxity 0(m). Similarly it holds for the main algorithm
that whenever the inner loop is executed, j is decreased. But j is always at least -1 and is increased at
most n times by 1. Therefore the total time for the algorithm is 0(m + n).

6.5. The Boyer-Moore String Matching Algorithm. -A

The Boyer-Moore algorithm [BoM77] uses the same basic idea as the KMP algorithm, but it compares ,
the pattern against the text starting at the right end of the pattern and is thus often able to skip more
rapidly over a part of the text that can not possibly contain a match. Two guiding rules are used to
determine the shift:
a) if the next character in text to be compared is t, determine the rightmost position (default 0) where

t occurs in pat;
b) choose s > I minimal such that :

__P -. P-.+ ... p,--,I P,,- - -,
.. - ___ = 4

P1 P1+ I .. PM-, P. .] - s -

tk-,n~i tt-.+I+t ... t4-1 tk tk+t

-=



32 6. PATTERN MATCHING IN STRINGS

It can be proved that with this shifting strategy, the Boyer-Moore algorithm has worst-case complexity
(if no occurrence of the pattern is found) of 0(n). For a proof see [KMP77, GuO80].

On the average, the algorithm preforms much better. In this case the average is based on the
assumption that all text strings of a given length are equally likely. Assume that q := PE1 is rather large,
and let r := [2 log, ,nj. Thus the probability that some teztk,+Ik occurs in pat is at most

qr

because there are q' equally likely possibilities for tezt,-,+, and at most m - r + I of them occur
in the pattern. If a match occurs, we need 0(m) steps to find all the matches in positions k - m + 1
through k - r, and have shifted the pattern by m - r. If there is no match, we can shift the pattern by
m - r immediately. Hence the average time complexity is

(mnL[ m - r+lo m)+(,,M- rt q qr q J

on a random text.

6.6. Space Efficient Linear Pattern Matching.

The pattern matching algorithms discussed so far use auxiliary space of size fl(m) to store the values
of the shift function. We now investigate a string matching algorithm (also of linear time complexity)
that needs only a constant amount of auxiliary storage. Contrary to the KMP algorithm this algorithm
must be able however, to read the input tapes (for the text and the pattern) in both directions. TheIalgorithm is based on properties of repeating patterns in strings. We shall first give some definitions and
basic lemmata, and we assume in the following that k is some fixed positive integer > 4.

Definition:

a) A string z is a period of a string w if w is a prefix of some z" (i.e., iff w is a prefix of zw).
b) For every p _ jwj, we set

reaehw(p) := max{q; w,, is a period of w,}.

c) A string z is basic if it is not of the form z for any z' and i > 1.
d) A string z is a prefix period of w if z is basic and zk is a prefix of w (i.e., reachw(jzj) >_ kjzj).

Periodicity Lenuna: If Iwl > p, + p, and w has periods of length p, and p2 3 p, then it also has a
period of length ged(pt, ps).

Proof: Assume without loss of generality that P, > pl. As w 2pP1+t.,P, = W P+1 ,P2+P and w,,+1,1-1
WJ,l,,,, because w has a period of length pi, and as w,,+,,l I, = w, 1._,, because w has a period
of length p2, we also have u,,p,+,lwl = wt,Il_(p,_,), and hence w has a period of length p2 - Pl.
Iterating this argument as in Euclid's algorithm we obtain the lemma. i

Corollary: If z and z' are prefix periods of w, with Iz'1 > , then Ijz' > (k - 1)jzj.

Proof: Assume to the contrary that lz'i _< (k - l)IzI. Then wI,klaI has periods z and z' and length
> [z i + 1z*1. Hence by the Periodicity Lemma, z or z' cannot be basic. But this contradicts the definition

of prefix period. I



6.6. SPACE EFFICIENT LINEAR PATTERN MATCiUING. 33

Decomposition Theorem: Each pattern pat can be decomposed pat =- uv such that v has at most one
prefix period and ul - O(shift.(1vl)) where

shift(j) := mints > 0; v,+,, = v,,_}j, for j 1,. .. , Jv).
Furthermore, such a decomposition can be found in time O(m).

We postpone the proof of this Decomposition Theorem for the moment and first show how the
space efficient string matching algorithm works. Basically, it checks for occurrences of the pattern suffix
v in the text, and whenever it finds one naively checks for u to the left of it (here the algorithm has to
back up the reading heads on the input tapes). The algorithm uses the properties of v in shifting the
pattern (suffix) in case of a mismatch by an amount which is basically a fixed portion of the length of
the matched prefix.

algorithm pmatch(text, pat);
begin

co k is a fixed integer > 4 oc;
co for the sake af simplicity we assume that, for j = lvi + 1, v, produces a character which does not
occur at all in text oc:
decompose pat = uv as stated in the Decompostion Theorem;
i :=I: J := 0;
while i < n - lvi and j < lvi do
if ti+i+, 3 vj+, then
begin

case v has a prefix period (of length r) of
false: begin i := i + rnax{l, j/kl}; j := 0 end-,
tre: if kr < j !_ reach4(r) then

begin i:= i + r; j :j - r end
else

begin i := i + max{l, [j/kl: j 0 end
end

else
begin
j :- + 1;
ifj = lvi ando, d texti-i ,,, = u then

"match found at position i - Jl + "
end

end pmatch.

Proof of the correctness of the algorithm:
Again it is appropriate to imagine that the pattern (which, in this case, is the suffix v of the original

pattern pat) slides on top of tcxt to the right. If texti+,,i+ matches v1. and a mismatch occurs in the
next position we can, without possibly missing a match in between, shift the pattern shift,.(j) positions
to the right where shift.(j) is as defined in the Decomposition Thcorem:

shift.(j) := mints > 0; v+1,j = vI,j-.}.

In the following we show that in the algorithm pmatch the pattern is always shifted a distance <
shif-t,(j) and hence that no occurrence of v in text can be missed.

Assume first that v has no prefix period. Then the algorithm always shifts the pattern (in case of a
mismatch) by rnax{ I, fj/kl} where j is the length of the prefix of i which matches the text after the
position given by the current value of i. In order for the algorithm to be correct (in this case) we must



34 6. PATTERN MATCHING IN STRINGS

have ilk < shift,(j). If we assume to the contrary that k > k . shift.(j) then clearly (v,,of .(j))k

would be a prefix of v'j, contradicting the assumption that v has no prefix period.
Now assume that v has a prefix period of length r > 1. If kr < j reach,(r) then certainly

shift,(j) r bezause shift,(j) < r would imply as above that v had a (second) prefix period of
length < hift,(j) < r. If j < kr then shift,(j) < i/k again would imply a second, shorter prefix
period. If j > reach,(r) assume again that shift.(j) < ilk. Then vI,,hitt.(j) is a period of vz,,.
Hence there is either a second prefix period for v, or j reach,(r), both contradicting our assumptions.

Hence the algorithm is correct. I

Analysis of the running time of pmatch:
As long as we do not count the time for the decomposition of pat and for the checks texti,,+I,i -

u, the integer quantity
(k + 1)i+j

increases every 0(1) steps (this is clear as (k + 1)(i + rj/k]) > (k + 1)i + (k + 1)i/k > (k + 1)i +j).
But this quantity is bounded by (k + l)n + m = 0(n + m). Each time an occurrence of v is discovered
in the text, the algorithm naively checks for u to the left of it using additional time O(Iul) (if for this
test it is necessary to first reset the input heads lvJ positions this time is going to be accounted for in
the 0(n + mn) time to find all occurrences of v). But v can be found at most n/shift.(JvJ) times in
text. As Jul = O(shift.(v)) the total time for these tests is 0(n). Together with the bound for the
decomposition of the pattern as stated in the Decomposition Theorem, we obtain the

Theorem:

The algorithm pmatch finds all occurrences of pat in text in time O(n + 7n) and uses only a fixed
number of (auxiliary) memory cells.

Let us finally sketch now a proof for the Decomposition Theorem.
As in the computation of the shift function for the KMP algorithm we match pat against itself. We

actually run pmatch with pat = text and initially v = pat and u the empty string. Whenever we
incur a mismatch Pj+l / pi+j+l we shift the upper copy of pat by max{l, [j/k]} until for the first
time j = ki holds. Up till (but not including) then no prefix period has been found so the shifting
just indicated is correct as we have argued in the correctness proof for prnatch. When j reaches ki
for the first time then z := patt,i is the shortest prefix period of pat. We now check whether pat
has a second prefix period (whose length then must be > (k - I)r, by the Corollary to the Periodicity
Lemma). Note that after i + j reaches reachpt(r), i gets decreased to zero. We continue pmatch with
the shifting done as stated in the algorithm for the case where the pattern has a prefix period of length
r := Izi until for the second time i equals (k - I )i. If instead we reach the end of pat then there is no
second prefix period and we can set v := pat and Jul = 0. Otherwise the length of this second prefix
period of pat must be greater than reach,.t(r) - r, by the Periodicity Lemma. We now cancel the initial
reach,.(r)/rJ - k + I copies of z from both copies of pat. After this, z is no longer a prefix period

of the remainder pat', and it follows again from the Periodicity Lemma that pat' cannot have a prefix
period shorter than reach,.t(r) - r. Hence the absolute position of the pointers i and j in pat' does not
change with respect to pat by the deletion of the prefix. Hence we can iterate the above process.

Note that in one iteration the length of the deleted prefix is at most the length of the next longer
prefix period. Therefore, the proportion of the total length of the cancelled prefixes to the length of the
last prefix period is bounded by 1 + Ilk + I/k 2 +... < 2. As certainly shift.(vl) is not less than the
length of this last prefix period (v is of course the last pat'!) we obtain

Jul = 0(shift.Q(vJ)).

Finally we remark that this decomposition algorithm, for the same reasons as the main algorithm
pmatch, runs in time 0(m) and uses only a fixed number of auxiliary memory. For more details and an



6.7. POSITION TREES. 35

implementation of pmatch on multitape Turing machines, which runs in real-time, the reader is referred
to [GaSSI.

6.7. Position Trees.

Another way to solve practically all of the problems mentioned in 6.1. is to use a data structure
called position trees , also called prefix, suffix, or bi-tree [AHU74, MaR80, McC76, Wei73]. Basically, for
every position i in text the shortest prefix p, of texti,,, is determined which uniquely identifies position
i. This means that whenever text is decomposed into upv then u must be text1 ,i_1 . The existence
of such a position identifier can be guaranteed b, appending to text a special endmarker which does
not occur elsewhere. The position identifiers pi are then stored in a tree whose leaves are in one-to-one
correspondence to the positions of text, and which also contains non-tree edges (also labelled with
elements from the alphabet) encoding the shift finction. It is pretty straightforward (though tedious) to
construct position trees (respectively a compacted variant thereof) in linear time and space when reading
text backwards. One of the references also gives an efficient construction for the case when text has to
be read on-line from left to right. For more details see the references given above.



Chapter 7

Searching Graphs and Applications

7.1. The Labelling of Trees.

For the systematic search of trees it is often useful to attach to the nodes numbers or labels which
give some information about the position of a node in the tree. Of course there are many ways to specify
positions in trees or graphs. We shall discuss the following standard labellings of rooted or directed trees
(note that there is no essential difference: a directed tree is necessarily rooted, and a rooted tree can, in
a unique way, be made directed):
- preorder numbering;
- postorder numbering;
- inorder numbering for binary trees;
- level numbering;
- descendant numbering.

We now specify these numberings in turn, by giving short pieces of programs which generate them.
The variables and data structures used should be self-explicatory.

(a) procedure preorder(node: v);
begin

num -= num + 1; pre[v] := num;

for all w E sonslv] do preorder(w)
end;

num :0 0; preorder(root);

Hence, whenever w is a proper descendant of v, then pre[w] > pre[v].

(b) procedure postorder(node: v);
begin

for all to E sonsavI do postordcr(to):
num := num + 1; post[v] :- num

end;

num 0; postorder(root);

Hence, whenever to is a proper descendant of v, then post to] < post[v].

(c) procedure inorder(node: v);
begin

if v has a left son to then inorder(w);

num : num + 1; in[v] := num;



7.2. SEARCH IN GRAPHS. 37

if v has a right son w' then inorder(w')
end;

num := 0; inorder(root);

Note that in binary trees there is a distinction between left and right sons. Let w be a dcsccndant
of the left son of v, and w' a descendant of the right son. Then we have

in[w] < in[vl < injw'j.

(d) procedure level(node: v);
begin

for all w E sons[v] do
begin

lev[w] := Iev[v] + I; level(w)
end

end-

lev[root] :I; level(root) co another variant sets lev[rootl 0 oc;

It is obvious that lev[vI equals the number of nodes on the (unique) path from the root of the tree
to V.

(c) procedure descendants(node: v);

begin
for all w E sonsv] do descendants(w);
des[v] := I co v is considered a descendant of itself oc;
for all w E sons fv do destvj := desjvj + deswJ

end; 1
descendants(root);

Clearly, des[v counts the number of descendants of the node v.
There are many (more or less trivial) relations between these numbcrings. As an example we state

(and leave the proof as an easy exercise) the following

Descendants Lemma: Let v and w be nodes in a (rooted) tree and assume that the prcordcr and
postorder procedures visit the sons of every node in the same order. Then the following four conditions
are equivalent:
- w is a descendant of v;
- pre[vj _< pre[w] < pre[v] + des[v];
- post[v] - des[vi < post[wl < post[v];
- prelv] _< pre[w] and post[w] K po8t[vJ.

Hence we might note as a corollary that pre and post together uniquely dcterminc the structure of
the tree.

7.2. Search in Graphs.

Many search problems on graphs contain or are special variants of the following general problem:
"Search all edges of a graph G = (V, E), number the nodes in some order from
I through n = IVI, and find a spanning f!rcst (i.e., a set of disjoint trees with
edges from E which contain all nodes in V) for the graph."

For this general problem, we give the following skeleton of an algorithm (formulated for the case of
an undirected graph; the generalization to digraphs is straightforward): 1A



38 7. SEARCHING GRAPHS AND APPLICATIONS

while there is an unnumbered node left in the graph do
begin

select an unnumbered node k;
select (if there is one) an edge e between a numbered node and k, add it to the forest and perform
actions...onforesLedges(e);
for all other edges e' between numbered nodes and k do
actions.on.non-forest.edges(e');
number k with the next available number

end.

If we now fill in the particular rules for the selection of the node k and the edge e, we obtain a
variety of graph searching methods. Some of the most important are listed below, together with their
selection criteria.

BFS (breadth-first-search):
select the node k and the edge e such that the other endpoint of e has the lowest possible number.

DFS (depth-first-search):
select the node k and the edge e such that the other endpoint of e has the highest possible number.

TS (topological search):
select a node k with a minimal number of edges from unnumbered nodes; select e arbitrarily.

MCS (maximum cardinality search):
select a node k with a maximal number of edges from unnumbered nodes; select e arbitrarily.
We shall discuss applications of these search methods for graphs in the sequel.

7.3. Connectivity.

An undirected graph G = (V, E) is connected if for any two nodes v, v E V there is a path in G
from v to wv. A directed graph is called connected if its undirected variant is connected. It is obvious
how to use DFS or BFS in order to determine the connected components (i.e., the maximal connected
subgraphs) of a graph.

7.3.1. Biconnectiviy.

Assume that G = (V, E) is a connected undirected graph. We want to know whether G can become
disconnected if we just remove one of its nodes (and the edges incident on that node).

Definition:

A node a E V is called an articulation point of G if there are nodes v, wv E V different from a such
that every path from v to w passes through a. A (connected undirected) graph G is called biconnected
if it has no articulation point.

Obviously the removal of an articulation point from a graph disconnects the graph. More general I
we could be interested in how many nodes it takes to disconnect a graph. The minimal number for this
is called the (node) connectivity of the graph. Hence a connected graph with no articulation point has
connectivity > 2, it is b/connected.

Lemmna:
(a) G is biconnected iff any two distinct of its edges lie on a common simple cycle.

(b) The property of lying on a common simple cycle gives rise to an equivalence relation in the edge set
E. Its classes are called biconnected components, and their induced subgraphs blocks.



7.3. CONNECTIVITY. 39

Proof: The proof for (b) is immediate, and the proof of (a) is given as a homcwork problem.

Lemma:
Let GC = (V,, Ej) be the blocks of C.

(a) For al i j, IV n vI< 1.
(b) A node a is an articulation point iff a E Vi n Vi, for some i 3 j.

Proof: (a) Assume that for some i - j there are two distinct nodes v and w in Vi n" V.. As Gi and C,
are both connected there are simple paths from v to w wholly within G respectively Gj and hence edge
disjoint (remember that the Ej form a partition of E). But it is obvious how to construct from these two
paths a simple cycle containing edges both from E and Ei. Contradiction.

(b) If a is an articulation point then there are (necessarily distinct) v, w such that every path from
v to w passes through a. As G is connected there is at least one such simple path. Let x and y be
the two nodes on this path next to a. Then the edges {x, a) and {yj, a} must necessarily be in two
different biconnected components because otherwise, by the previous Lemma, there would be a simple
cycle containing these two edges. and a could not possibly be an articulation point.

On the other hand, if a E Vi n vi for some i 3 j, then there are edges {x, a} E E. and {a, '} E Ey,
and every path from x to y has to pass through a because otherwise there would be a simple cycle
containing these two edges which would contradict the fact that they come from distinct biconnected
components. But then a is an articulation point. I

We can think of a DFSrbeing implemented recursively in the same way as the preorder labelling
routine, and we say that a' DFS visits a node v whenever the instance of the recursive search procedure
for node v is active..,

If we perform.a depth-first-search on a connected undirected graph G = (V, E) we obviously obtain
a spanning fores corsisting of one tree T = (V, E'). We also make the following basic observation I
about the non-tree edges in E - E', from the definition of DFS:
- Every ptin-tree edge {v, w} (encountered when visiting v in the DFS) is a back-edge, i.e., w is an

anc 59or of v in the tree constructed so far (and hence also in T).
A'Uhis fact permits us the following notational convention: an edge {v,w} E E is written v - w if it

i a tree edge and w is a descendant of v in the tree, and it is written 1F w if it is a back-edge from v to
its ancestor w. We also write t* w for the (possibly empty) path from v to its descendant w in the tree.

Having in mind that all non-tree edges of G are back-edges and that the removal of an articulation
,/ disconnects G we immediately obtain the following characterization.

/Lemma:
Let G = (V,E) be a connected undirected graph, and 7' = (V, E') a DFS-tree of G. A node

/ a E V is an articulation point of G iff either
(a) a is the root of T and has more than one son; or
(b) there is a son a of a such that no descendant of s (including s itself) has a back-edge to a proper

ancestor of a.

Proof: It is clear from the observation stated above that a is an articulation point if either one of the
two conditions in the Lemma holds. Now assume that a is an articulation point in G. If a is the root
of T and has only one son then G does not become disconnected if we remove a and its incident edges
because all remaining nodes are reachable in the tree from this one son. Also, if a is not the root of T
and every son of a has a descendant with a back-cdge to a proper ancestor of a then the removal of a
and its incident edges clearly does not disconnect G and a-is not an articulation point. U

Hence, if we define the following labeling for tie nodes in v E V

Iow[v] := min{precz], prefw]; * w),



40 7. SEARCHING GRAPHS AND APPLICATIONS

where of course the preorder numbering is the one given by the DFS, we obtain the following

Corollary:

A node a different from the root is an articulation point iff low [a] >_ pre[a] for a son a of a in T.

It is immediate to transform the definition of low into the following local form:

lowiv] = min{pre[v], pre[wj,lowjaj; V- w, a son of v},

which we can use to determine the biconnected components of G.

algorithm biconnect;
begin

procedure search(node: v);
begin

num := num + 1: pre lv] := num, lowv] :=num;
for all edges {v, w} incident on v do

co we assume that all these edges are given in an adjacency list of v oc
if pre[w] = 0 then
begin co w hasn't been visited yet in the DFS oc

push {v, w} onto stack;
f ather[wJ := v
Co this information is needed to distinguish the tree edge by which w was entered oc;
search(w);
if low[w] _ pre[v] then
begin

declare v an articulation point if it is not the root of the DFS-tree or if it is the root and has
at least two sons;
pop all edges from the stack up to and including {v, w} as a new biconnectcd component

end;
low~v] := min{low[v], low[w]}

end
else
if w 3 father v) then low Iv] : m min{low[v], pre[w]}

od
end search;

initialize stack; num := 0; for all nodes v do prevjl 0;
search(root)

end biconnect.

We only remark that the algorithm biconnect as it is formulated automatically determines the
biconncctcd components containing edges from the root of the DFS-trcc because the condition low[w] _
prefroot] (= 1) is trivially satisfied whenever in search(root) a search(w) for a son w of the root has
been performed.

Theorem:

The algorithm biconnect determines the biconnected components and articulation points of a connected
undirected graph G = (V, E) in time O(IEI).

Proof: It only remains to verify the given time bound. But this is clear as the DFS visits every edge at
most twice (once in every direction). 3



7.3. CONNECTIVITY. 41

Remark: A biconnected component consisting of a single edge is sometimes called a bridge.

7.3.2. Strongly Connected Components.

Let now G = (V, E) be a directed graph (without multiple edges). Call two nodes v, w E V
equivalent if there is *a (directed) path in G from v to w and one from w to v (it should be clear that
the relation among the nodes of G such defined is in fact an equivalence relation).

Definition:

The subgraphs induced by the equivalence classes defined by the above relation are called the strongly
connected components (SCCs) of G.

Note that SCC's are subgraphs induced by subsets of the node set of the (digraph) G (and hence
we shall say that we have determined an SCC if we have determined its node set) whereas blocks in
undirected graphs are given by subsets of the edge set (and hence we determined blocks by determining
biconnected components).

If we perform a DFS (together with preorder numbering) on a digraph we obtain four kinds of edges:
- tree edges which are part of the spanning forest constructed by the DFS;
- forward edges v --+ w which are non-tree edges with prelvj pre[wI:
- back edges v -w w where w is an ancestor of v in the DFS-forest (and hence of course pre[w) <

pre[V );
- cross edges v - w which are edges with pre[w] < pre[v] such that w is not an ancestor of v (but has

been visited before in the DFS; v and w may even be contained in different trees of the DFS-forest).

Definition:

Given an SCC C of G = (V, E) and a DFS-forest of G, we define the root of C to be the vertex
r of C with minimal preorder label.

It is immediate from the definition of the DFS routine that, if r is the root of C, the DFS visits all
nodes of C between its first and last visit to r.

Lemma:
A node r is the root of an SCC iff there is no back edge from a descendant of r to a proper ancestor

of r and if there is no cross edge from a descendant of r to a node wo such that the root of to's SCC is
a proper ancestor of r.

Proof: The proof follows immediately from the above remark and the observation that whenever one of
the conditions in the lemma is not satisfied a node in r's SCC different from r has been visited before
by the DFS. I

Again it is possible to define a labelling of G which captures the criterion of the Lemma:

Definition:

Lowlinkvl :- min{pre(w]; to can be reached from v via zero
or more tree edges possibly followed by a back
edge or a cross edge to a node the root of whose
SCC is an ancestor of v}.

Hence the above Lemma translates into
r is the root of an SCC iff Lowlink[r] - prefr).

I,'°I



42 7. SEARCHING GRAPHS AND APPLICATIONS

And we also get a local, recursive formulation of the definition of Lowiink:

Lowlinkv :--- min{preiv , prew), Lowtinkla]; a is a son of v,
v - w is a back edge, or v --+ w is a cross edge
and the root of w's SCC is an ancestor of v).

algorithm sec;
begin

procedure search(node: v);
begin

num := num + 1; prelv] := num; Lowlink[v] := num;
push v onto stack;
for all edges v - w do

co we assume that all these edges are given in an adjacency lisi of v oc
if pre[w] = 0 then
begin co wn hasn't been visited before oc

search(w);
Lolink[v := min{Lowlink v], Lowlinklw]}

end
else
if 0 < pre[w] < pre[v" then

co we set pre(w] negative as soon as w's SCC has been completely determined; so here v -w i
is either a back edge or a cross edge with w still on the stack and the hence the root of 's
SCC a proper ancestor of v oc
Lowlinklv] := min{ Lowlink[v], pre[w]}

od;

if prelv] = Lowlinktvl then co v is the root of a new SCC oc
pop all nodes on top of and including v from the stack and negate their preorder label

end;

initialize stack; num := 0; for all nodes v do pre[v] := 0,
while there is a node v with pre[v] = 0 do search(v)

end scc.

Note that the while loop is necessary here (diffcrent from the case where the DFS was applied to
a connected undirected graph in the algorithm biconnect) because for a digraph which is not necessarily
strongly connected, DFS produces a spanning forest which may contain more than one tree.

Theorem:

The algorithm scc determines the SCC's of a digraph C = (V, E) in time o(Igl).
Proor: Again the correctness of the algorithm is obvious from the characterizations given before. And
the time bound can be seen from the fact that in a digraph, DFS visits every edge exactly once. |

7.4. Planarity Testing.

74.1, Planar Graphs&

A finite undirected graph C = (V,E) is called planar if it can be drawn in the plane (or on
the surface of a three-dimensional sphere) without any edges crossing one another, i.e., the edges are



7.4. PLANARITY TESTING. 43

represented by connected, finite length curves, and any point common to more than one such curve must
represent a node of C incident on the corresponding edges. A drawing of a graph (in the plane or on
the sphere) is called plane if it satisfies the above planarity condition.

Planar graphs have been studied extensively in the past, both for theoretical and applied purposes.
We only refer to the huge amount of work that has come from the investigation of the famous Four
Color Problem [BeW78]. There is also a strikingly simple, classical characterization of planar graphs as
given in the following

Theorem (Kuratowski, [Kur30]):

A graph is nonplanar if and only if it contains a homeomorphic preimage of K5 or K 3,3 .
Remark: K5 is the complete graph with 5 nodes, and K 3 ,3 is the complete bipartite graph with 3

and 3 nodes:

K5: K 3,3:

A homeomorphism is a continuous (in the topological sense) mapping. Here, a graph is considered as
a manifold consisting of finite length curve segments whose intersections exactly represent the incidence
relation of the graph. I

For a proof of Kuratowski's Theorem we refer to [Eve79].
Though Kuratowski's criterion is very simple there seems to be no obvious way to turn it into an

efficient algorithm for testinb planarity of a given graph. Before we develop a, in fact linear, algorithm
for this problem let's first consider a few more properties of planar graphs.

Every drawing of a graph in the plane (or on the surface of a sphere) defines (topologically) connected
components which are the pieces left over when we cui along all the line segments representing the edges.
For a plane drawing of a graph, these connected components are called faces. Note that a (finite) plane
graph has exactly one unbounded face, the outer face, while all the other, inner faces are bounded.

Theorem (Euler, 1736):

Let G be a nonempty, connected plane graph with n nodes, e edges, and f faces. Then the following
relation holds:

n + f - e =2.

Proof: We prove the formula by induction on e. If e = 0 there is exactly one node as G is nonempty
and connected, and hence there is exactly one, the outer face, and the formula holds. Assume the formula
holds for all plane graphs with less than e edges, for some e > 0. From a plane graph with e edges,
take away one edge such tht either the graph remains connected or, if it becomes disconnected, one
component consists of a singleton node. '['his can always be achieved. In the first case obviously the
number of nodes remains the same whereas the number of faces decreases by one (note that the faces
on the two sides of the deleted edge must have been dificrent: otherwise, as a face is (topologically)
connected, we could draw a closed line around one of the cndpoints of the deleted edge without crossing
any edge contradicting the fact that the graph is still connected). and by induction the formila holds. In
the second case. we apply the induction hypothesis to the other connected component left after the edge



44 7. SEARCHING GRAPHS AND APPLICATIONS

deletion. If we add to it the deleted edge and its second cndpoint we do not change the number of faces
while increasing the number of nodes and the number of edges each by one. Hence the formula also
holds for plane graphs with e edges, completing the induction. I

As a consequence of Euler's formula, every plane drawing of a planar graph has the same number
of faces.

Corollary:

Every planar graph without self-loops and parallel edges, and with n > 3 satisfies

e < 3n -6.

Proof: Each side of an edge in a plane drawing of a graph touches only one face. As there are no self-loops
and parallel edges the boundary of each face is formed by (one side of) at least three edges, and hence we
obtain f < 2e/3. If the graph is not connected we may add edges without destroying its planarity such
that it becomes connected. Hence we can use Euler's formula and obtain e = n + f - 2 < n + 2e/3 - 2
from which we get e < 3n - 6. [

Corollary:

Every planar graph without self-loops and parallel edges has a node with degree at most 5.

Proof: If we assume the contrary we obtain 6n < 2e (every edge is counted twice, once for each endpoint)

which contradicts e < 3n - 6. I

If we wish to test planarity of graphs we may actually restrict ourselves to biconnected graphs. As
we have seen in one of the homework problems the articulation points of a graph connect its blocks in
form of a tree. On the other hand it is always possible to draw a planar graph in the plane in such
a way that a specified node touches the outer face (the easiest way to see th's is to look at a "plane"
drawing of the graph on the surface of the sphere where all facez are bounded. If we choose an interior
point of a face adjacent to the specified node, and then project, by a central projection with this point
as center, the surface of the sphere onto a plane tangent to the sphere on the opposite side, we obtain a
plane drawing of the graph with the specified node on the perimeter of the drawing). Hence, if we have
a planar drawing of a block, we can find planar drawings (if they exist at all) of its children in the tree
of blocks such that for each of them the connecting articulation point lies on the outside, and we can
attach these drawings to the drawing of the articulation points in the father block and still obtain a plane
drawing. We therefore assume in the sequel that G = (V, E) is a biconnected undirected graph without
self-loops and parallel edges (which also could be added later to a plane drawing).

Let C = (V',E') be a (simple) cycle in G, and let E" be En ((V - v') x (V - v")).

Definition:

(a) A connected component of (V - V', E") together with the nodes in V' linked to this connected
component by an edge in E - E' and together with these edges is called a bridge of G with respect
to C. The nodes both in C and the bridge are called the attachnienis of the bridge.

(b) An edge in E - E' with both endpoints on C is called a singular bridge.

Definition:

Two bridges B and B' (of a graph G with respect to a cycle C in G) inierlace if
(a) B has attachments a, b, the bridge B' has attachments c, d, all four are distinct, and they appear on

C in the order a, b, c, d; or if



7.4. PLANARITY TESTINC 45

(b) B and B' have at least three attachments in common.

Lemma:

Let BI,... , B, be a set of bridges (with respect to cycle C) such that no two of them interlace and
such that C + Bi (the subgraph of G given by the nodes in C or Bi) is planar, for every i = 1,..., r.
Then C + BI +... + B, is planar.

Proof: In a plane drawing clearly every bridge must be drawn completely on the inside or the outside
of (the drawing of) C. Let the nodes on C be in order i, ... , v,, v1 and assume inductively that the
Lemma holds for any set of r - 1 (non-interlacing) bridges, r > 1. As the bridges BI, ... , B, do not
interlace we can find a bridge B3 such that, if v, is the lowest and vi the highest (in the above order of
the nodes on C) attachment of Bi no other bridge has an attachment vi with I < i < h. By induction
we can obtain a planar drawing of C + BI + ... + BI-, + Bi+, + ... + B, (actually with all these 
bridges drawn on the same side of C) and also, by assumption, a plane drawing of Bi together with
the edges on C between v, and v#,. If I 34 h we can "squeeze" the latter into the one bounded face
of the first drawing which has the edges of C between v, and Vt, at its boundary, and if I = h we can
insert the plane drawing of Bi in any (bounded) face with v, on its boundary and thus obtain a plane
representation of C + BI + ... + B,. Hencc the induction is complete. 3

Theorem:

Let B,..., B, be the bridges of G with respect to C. Then G is planar iff
(a) C + Bi is planar for every i, i = 1,..., r; and
(b) the set of bridges can be partitioned into two subsets such that no two bridges in the same subset

interlace. I
Proof: If we have a plane drawing of G the partition of the bridges of G into those drawn on the
inside respectively outside of C clearly satisiies the condition in the Theorem. The other direction is
a consequence of the previous Lemma where we have in fact shown that every set of non-interlacing
bridges can be drawn on one side of G. I

The planarity testing algorithm presented in the next section makes use of this characterization. It
recursively tests whether C + Bi is planar, and tries to partition the set of bridges with respect to C into
two subsets as stated in the Theorem. In order to find C and the bridges a DFS is used.

7.4.2. The Hopcrofl-Tarjan Planarity Testing Algoriihn.

Assume that DFS is applied to G, and that the nodes are renamed such that v = pre[v] for every
v E V. We also assume that during the DFS lowiv] (as defined in 7.3.1.) has been computed. For the
proper parsing of C we use still another labelling of the nodes given by

1o=2 V] = min{V,/Ow[W; w / owtI,], , i ,).

The label low2[v] essentially gives the second lowest node (but at least v itself) reachable from v along a
branch in the DFS tree and a back-edge. Using these auxiliary functions we assign the following weight
c(v, w) to every edge (v, o) of G (the edges are now considered directed according to the DFS):

(2w if i w;
c(v, w) 2Low[u] if v wo and Iou2[w] > v;

12low[w] + I ifV -. w and low2lwJ < v;

and order the edges in the adjacency lists of C (as the edges arc directed now each edge occurs in exactly
one such list) in order of nondecreasing weight. Using bucket sort this can be done in linear time.



46 7. SEARCIIINC GRAPIS AND APPLICATIONS

We now describe an algorithm find-path which first determines a cycle C of G through the root of
the DFS tree, and which then outputs a sequence of simple paths which together form the set of bridges
of G with respect to C. Because of the way in which the adjacency lists of G have been reordered these
paths are generated in a order which will help us to make efficient use of the planarity criterion of the
last Theorem in the previous section.

algorithm find-path;
begin

co we are given a DFS tree of the biconnected graph G together with the back-edges; each edge of
G appears (as directed edge) in exactly one adjacency list. and the adjacency lists are reordered as
described above; the nodes are named 1,... ,n in the order they were visited in the DFS oc
mark all edges " .new".
v:= 1; C {};
let v -. u be the first (in adjacency list) edge leaving v; mark it "old";
%hile u 3 1 do
begin

co as G is biconnected and because of the reordering of the adjacency lists we are guarantccd to
reach the root again oc
C C U {u}; v := U;
u: endpoint of first ("new") edge leaving v;
mark v -.+ u "old"

end;
output the (simple) cycle C;

co note v now is the highest numbered node on C oc
while v 0 1 do

co as G is biconnected there is only one tree edge from the root oc
if there is a "new" edge leaving vi then
begin
u: endpoint of first "new" edge leaving v,;
P {v, u};
while v < C co v u u is not a back-edge oc do
begin

Vi i;

u endpoint of first "new" edge leaving v
co such an edge exists because G is biconnected oc;
P P U {}

end;
output next path P

end
else v := fatheriv]

od
end find-path.

It is clear from the properties of the DFS tree that f indpath uses time O(V1) and first outputs
a simple cycle C through node 1 (the root), and then a sequence of paths P. each of which is simple
(because it consists of zero or more "new" tree edges followed by a "new" back-edge leading .to a proper
ancestor of P's first node, again because G is biconnected and also because there are no self-loops) and
has exactly two nodes in common with previously generated paths, namely its first and last node. We
summarize the properties of find-path which we shall use in the following



7.4. PLANARITY TESTING. 47

Observations:
(a) Let P bef -- v - I.... -. 1 be a path generated by find-path. If v 34 1 then I - lowlv], and in

every case I is the lowest node reachable from f via a path of the form I V w where i w has not
been included in a previous path (automatically true if f 34 v).

(b) Let P, : fL 1,.P 2 : f2 12 be two paths such that PI is generated before P2 by find-path, and
assume that f f1, i.e., that f2 is a descendant of f, in the DFS tree (possibly f 12). Then
11 _< l. This is an immediate consequence of the fact noted above that the endpoint of a path is
always the lowest point reachable via "new" tree edges followed by a "new" back-edge.

(c) The following property makes use of the auxiliary function loui2. Let P, : f -- v -. ... -- I, and
P2 : f -- to -+ ... -+ I be two paths generated by find-path with the same first and last node
such that again PI is generated before P2, and assume that v $ I and Low2(v] < f. Then also
to 0 I and low2lwl < f. The reason is that otherwise f --, w would have to come before f - v
in the adjacency list of f, because of the definition of the low2 function and the reordering of the
adjacency lists.

Lemma:
Let B be a non-singular bridge, and i its largest attachment. Then B is entered via a tree edge

from i, completely explored before find-path backs up to i again, and all other attachments of B are
back-edges.

Proof: Because every path constructed by find-path terminates as soon as a back-edge is encountered,
certainly no node of B which is not an attachment is visited before find-path backs up to i and traverses
an edge i --t w belonging to B. As B is non-singular i --* w cannot be a back-edge and hence must be
a tree edge. As B is connected by definition the DFS explores all edges belonging to it before backing
up to i, and hence all the other attachments of B must be back-edges. I

) Lemma:
Assume we have a plane drawing of C + BI + ... + BI,, where B,... ,BI-, are the bridges

explored by find-path so far, and let i -- ... - j be the first path of the next bridge B = Bi output
by find-path. Then B cannot be added to the inside (resp., outside) of C if there is a back-edge of
one ofB,... ,BI-, drawn inside (resp., outside) of C and ending in a node k with j < k < i.

Proof: Assume that there is a back-edge ending in k with j < k < i, and let this back-edge be part
of Bi,., ' < 1. Also, let i' be the highest numbered attachment of B,. Thcn, because of the previous
Lemma, we have i' > i. If i' > i the bridges BI and Bi, interlace according to the first part of the
definition of interlacing as j, i are attachments of B, the nodes k, i' are attachments of B,, all four
of them are distinct and they occur on C in the order j, k, i, i'. On the other hand, if i = i', let
i' --+ ... --* j' be the first path of Bi,. produced by find-path. Then j' lies on C, and because of
observation (b) about the properties of find-path we know that .j' < j. Now we have again two cases.
If j' < j the two bridges 11, and Bi, interlace as before by the first part of the definition. If however
j' = j we note that B,. cannot be a singular bridge because it also has the attachment k, and hence part
(c) of our observations about findpath applies and allows us to conclude that the new bridge Bi must
have a third attachment k' with j < kc' < i. Depending now on whether k = k' or not, we obtain that
Bi and B,, interlace according to the second respectively first part of the definition.

In any case we have thus shown that under the conditions of the Lemma the new bridge Bi would
interlace with some other bridge drawn on the same side of C which is impossible. 3

We are now able to describe the final algorithm for planarity testing. After having determined the
cycle C, it proceeds by adding to a plane drawing of C plane drawings the bridges in the order in which
they are explored by find.path. As at any point the bridges drawn inside and those drawn outside
of C could be swapped, the algorithm tries to draw every new bridge on the inside of C after having



48 7. SEARCHING GRAPHS AND APPLICATIONS

flipped bridges drawn earlier and standing in the way to the outside. While find-path is outputting
paths within one and the same bridge the algorithm checks rccursivcly whcther this bridge together with
the segment of C between its lowest and highest numbered attachment is planar.

The previous Lemma gave a condition for bridges which cannot be drawn on the same side of C. In
general, drawing one of such bridges on one side of C fixes some other bridges to bc drawn on the other
side of C or again on the same side. As bridges are determined by the back-edges to their attachments
we can formalize this situation into the following

Definition:

A block of back-edges (to attachments on C) is a maximal set of back-edges such that putting one
of the back-edges (and hence the bridge it belongs to) on one side of C implies the positions of all the
other back-edges (and their bridges).

The planarity testing algorithm maintains two lists Si and S. with the back-edges which are currently
drawn on the inside respectively the outside of C. The elements within each list are ordered according
to nondecreasing value of the end nodes of the back-edgcs (actually it is sufficient to keep the lists of
these nodes which might then of course contain repetitions). Now part of the back-edges of a block may
be contained in S and part in S. but within each of the two lists the elements of a block appear in a
nice order.

Lemma:
Let j and i be the lowest respectively highest numbered attachment of back-edges in some block, If

a back-edge has attachment k with j < k < i then this back-edge belongs to the block.

Proof: We are going to prove the Lemma by induction on the number of bridges explored at any moment.
The claim is certainly true as long as at most one bridge (with respect to C) has been explored (assuming
that it together with C was found planar by a recursive application of the algorithm) because then all
elements in Si (S. is empty) belong to one bridge and hence one block. Now assume that bridges
B 1,... , BI- 1 have been explored so far for some I > 1, and that the Lemma holds at the moment before
the first path of the next bridge B, is being output by find-path. Let this path be i' -+ ... --+ j'. As
we may decide arbitrarily to draw B at this moment on the inside of C (if it turns out to be planar at
all itself) the previous Lemma tells us that all bridges which have attachments k with j' < k < i' and
are currently drawn on the inside of C, have to be flipped to the outside. What is more, all blocks with
such an attachment k are forced to be drawn on the other side than B1. Hence we can combine all the
back-edges of B, and all edges in blocks with attachments k between j' and i' as above to form a new
block. If there are only attachments k with j' < k < i' from back-edges on S. their position clearly is
also determined by the position of B1, and they belong to the same block as the back-edges of B1. Hence
we have established the claim of the Lemma for the moment after the exploration of one more bridge,
and thus completed the induction. I

As a consequence of this L.emma we note that the back-edges belonging to one block appear
contiguously on the lists Si and S.. As we have to be able to flip whole blocks from one side of C to
the other whenever there occurs a conflict with the first path of a new bridge, we add, for each part of a
block on one of the two lists Si and S., a pointer from the last element of the block in the list to its first
element. Using these pointers it is possible to combine the sublists of two adjacent blocks in constant
time and also to find the blocks which overlap with a new path.

The algorithm is now straightforward. Whenever find-path outputs the first path P of a new
bridg c we determine in Si and S. the blocks which interfere with the new bridge and hence have to
be combined with it into a new block. We then flip all blocks in S, with attachments between the two
cndpoints of P to S. If after this swap there arc again conflicting back-edges on Si (because they were
flipped in from S.) we stop and declare the graph non-planar. Otherwise we insert a special marker in



7.5. SHORTEST PATH PRORIEMS. 49

S. at the position of P's starting point and check recursively whether the new bridge together with the
segment of C between the two endpoints of P (let us call the cycle consisting of P and this segment C';
it plays the role of C in the recursive step) is planar, using the same lists Si and S.. After the algorithm
has completely explored the new bridge(and determined that it is planar) we still have to make sure that
all bridges of this new bridge with respect to C' which have attachments to the segment of C between
the two endpoints of P can in fact be drawn on the inside of C' (which they obviously have to if the new
bridge is to be drawn on the inside of C). This can be done by flipping all those blocks with back-edges
in S. after the special marker introduced before the recursive step. If after this flipping process there are
still (or again) back-edges after this marker we again stop because the graph is non-planar. Otherwise the
algorithm proceeds to explore the next bridge.

Theorem:

The Hopcroft-Tarjan path addition algorithm tests whether a graph is planar in time O(IVI).

Proof: Clearly the initial DFS with the renaming of the nodes and the computation of the auxiliary
functions takes time linear in IVI if we check during the search that in fact IEI 3IVI (otherwise we
may stop immediately!). Time linear in IVI is also sufficient for the reordering of the adjacency lists
(done using a bucket sort) and the find-path algorithm because it is essentially another DFS. The total
number of elements in the lists Si and S. is bounded by the number of back-edges, and hence O(IV ).
The union of two blocks can be done in constant time, and as the number of blocks decreases by one
after each such union, there can be at most O(JVJ) such operations. Hence we obtain a total time of
O(jVj). I

7.5. Shortest Path Problems.

Suppose we are given a (directed or undirected) graph G - (V, E). a length d(x, y) _ 0 for every

edge x --+ y (if G is undirected we assume that d(x, y) = d(y,, x) for all edges: we also assume for
notational convenience that d(z, y) = +o if the edge z -+ y is not present in G), and we want to know
the length dis[v, o] of a shortest path between two nodes v and w, ie.,

f

disIv,w] = min{ d(zi.i, zj); v = zo --... --* x,_ -I-+ , = w is a path in G}.

(Hence, by default, dis[v, w] = o if there is no path v o.)
Shortest path problems are usually divided into the following categories:

(a) single pair shortest path problem: find the distance between a given pair of nodes;
(b) single source shortest paths problem: find the distance between a given node and all other nodes;
(c) all pairs shortest paths problem: find die distance between every pair of nodes.

It turns out that no algorithm for (a) is known which would not at the same time essentially solve
problem (b).

7.5.1. Dijkstra's Single Source Algorithm

We construct a bigger and bigger set S of nodes whose distance in G from some given node a is
known.

algorithm single-source-shortest..path;
co determine the distance from node a to all v E V. the graph G = (V, E) is given by adjacency lists;
dlv, w] _ 0 is the length of edge v w to (+0o if not !,resent) oc

• .;;,



50 7. SEARCIIING GRAPHS AND APPLICATIONS

begin
S = a}, disfal 0;
for all v E V - {a} do dis[v] dia, v]:
while ISI < IVI do
begin

determine v E V - S with minimal dis[v];
S := S u {V};
for all (v, w) with w E V - S do

diB[w] := min{dis[wl,distv] + d[v,w]}
end

end single-sou rce-shortest-path.

Theorem:

The algorithm single.sourceshortest-path correctly determines the distance from a to every
v E V, in time O(IV 2).

Proof: We only have to verify the correctness of the algorithm, the time bound is immediate.
Whenever ISI < IvI is checked, dis[v] is the distance from a to v for all v E S. This is certainly

true before the first execution of the loop. Suppose now that just bef,:e some later execution, v E V - S
is such that dis[vl is minimal, assume that

a --+ sl-- . .-- s,---+V - . .v-- vq'--+ V

is a shortest path from a to v with s,...,a, E S and vi S (note that r = 0 and q = 0 are
possible), and also assume now by contradiction that this path is strictly shorter than dis[v]. But,
if q > 0, the length of a -- ... -" v, is at most the length of the whole path and hence
< dislv] < dis~v], contradicting the choice of v. Hence q must be zero and dis[v] is correct because
it was set to dis[sJ + dis,, v] (resp., d[a, v], if r = 0) in some earlier traversal of the inner loop and
because disas,] was then correct by the induction hypothesis. I

Remarks:

(a) Using appropriate data structures (priority queues with update operations) we can implement
algorithm single-source-shortest-path to run in time O(IEIlogIVI) or O(kIEI + kIVII+1/k)
for any positive integer k.

(b) A similar algorithm (though with running time O(IvI3) is possible for the single source shortest
path problem where we allow arbitrary edge lengths but no negative length cycles (see homework
problem).
For more information on these extensions see [Joh73].

7.5.2. The All Pairs Shortest Paths Problem

Now suppose we want to compute the length of a shortest path between all pairs of vertices. Let
vl,... ,v, be the nodes of G. Suppose the distance between z and y, dIXYJ satisfies d[z,y] > 0.

Define cT to be the length of a shortest path from vi to vi containing as internal nodes only vt, with
k' < k. A good algorithm to solve this problem (especially if the graph is dense) is Floyd's algorithm:



7.5. SHORTEST PATti PROBLEMS. 51

begin
for all (i,) do ci := di, jl co 0 if i = j oc;
fork := 1 to n do

for all (i, j) do
9 min{C(,) + C(ki--t

end.

To see that this algorithm works it is necessary to observe that every shortest path is simple. It is
then an easy induction on k to show that c, V is the length of a shortest path from i to j with internal
nodes only Vk' with k' < k. If vk does not appear on the shortest path from i to j containing as internal
nodes only Vk, with k' < k then c()= c - ' ) . Otherwise, vh appears on the path exactly once.

The algorithm clearly requires O(IVI') time.

7.5.3. Min-Plus Transitive Closure.

The all pairs shortest path problem can also be solved using matrix methods. It is possible to define
a matrix product with other operations in place of addition and multiplication. Specifically we will be
interested in what results when addition is replaced by the minimum operation and multiplication is
replaced by addition, i.e., if C = AB then cij = mink {aik + bk,}. If A gives the length of edges
in a graph, i. e. a =j = d[vi, vil between nodes v, and v-, then A 2 using the Min-Plus product
gives the minimal distance along paths consisting of two edges, A3 three edges, and so on. Setting
A' = mini>oA' turns out to be well defined. Here, AO is the matrix with 0 on the diagonal and +oo
everywhere else. It functions as an identity matrix with respect to this product. The other powers are
defined by Am+' = AA' for m > 0. This matrix, A*, is called the (Min-Plus) transitive closure of A.
It is the solution to the all pairs shortest paths problem, if A is the distance matrix. We shad later prove
that the complexity of transitive closure is the same as that of matrix multiplication (to within a constant
factor). It is therefore interesting to look for good implementations of Min-Plus matrix multiplication.
It should be noted that the o(n 3 ) algorithms of Strassen and others for Plus-Times matrix multiplication
will not work because the min operation does not have a well defined inverse.

There is, however, an 0(n'/') algorithm for this problem using a different model of computation.
This is the decision tree model. In this model different code may be executed depending on the results
of each comparison. This code will depend on n, the size of the matrix given by the number of rows or
columns it has. The 0(n s /2 ) algorithm is too complicated to be discussed here, so an 0(ns/2(Iogn)'/ 2 )
algorithm will be discussed instead. Both algorithms are described in more detail in [Fre76].

We wish to compute the Min-Plus product AB, where A = (a,-) and R = (bi-). We divide A
into n X m submatrices, A,. The value of m will be determined later. Similarly we divide B into
m X n submatrices, B,. The product, AB is min(AiB1 ,... ,A,/,B,,/,). If the AjBi have somehow
been computed, computing AB takes n3 /m time since there are n/m matrices in the minimum and
processing each one requires 0(n 2) time.

To compute A, 11, for example, we consider each 1 < r < s _ m. For each such pair we sort the
2n differences ai - a, and b.8 - bj, for 1 < i < n and I < j < n. For all pairs of r and s this
takes O(m2 nlog(n)) time. Computing an entry, cij of AIB, is the same as computing the t(i,j) such
that ait + bty is minimum. Since air + b7, _< a, + b.j if and only if ai7 - a. < b.j - b.j, once the sort
is done determining t(i, j) can bc done in constant time in the decision tree model since it is completely
determined by the result of the sort.

Therefore computing the AiB, requires O(mn2 log(n)) time. If m = n'/ 2 /(Iog(n))/ 2 the whole
algorithm takes 0(n 5 /2 (logn)1/2 ) time. If n is sufficiently large it is possible to precompute small
decision trees. This results in an 0(n3 (log log n/log n)I/' time -,gorithm.

This algorithm also works fo4 the boolcan, Or-Ad. matrix product.
Yao and others have proved that under the decision tree model at least fl(n 2 log n) time is required

to compute the transitive closure. [YAR77]



52 7. SEARCHING GRAPHS AND APPLICATIONS

7.5.4. Boolean Matrix Multiplication, Transitive Closure

We now want to prove the equivalence of matrix multiplication and transitive closure as far as
computational complexity is concerned. We will consider the boolean Or-And product here. The proof
will also work for the Min-Plus product discussed earlier. To aid notation we will denote the additive
operation by "V' anti the multiplicative one by "A". The Or-And product is then ci . = Vkak A bki
for the .i .)duct C = AB. To get an intuitive idea of what is going on it is useful to suppose that the
matrices are adjacency matrices. Let A' be the transitive closure of A. Then intuitively, aq = I if and
only if there is a path from i to j in the graph.

Let T(n) be the time to compute the transitive closure of n X n matrices. Let M(n) be the time to
compute the boolean product of two n X n matrices.

Theorem:

If T(3n) _< cT(n) and M(2n) 4M(n) then T(n) = O(M(n)).
The assumptions are reasonable since the first one is satisfied if the transitive closure can be computed

in polynomial time and the second is satisfied if matrix multiplication takes time n(n
2 ).

Proof: First we reduce M, matrix multiplication, to T, transitive closure. Suppose we want to compute
C = AB. Let ( OA 0)

L= 0 0
0 00

Intuitively, this corresponds to a tripartite graph with nodes xi, yi, z; for 1 < i < n. There is an edge
from zi to yj if and only if a,, = I and an edge from y/ to zi if and only if b;, = 1. There are no
other edges. It is easy to see that

::L"= 0 1 B
0 0

Therefore M(n) :_ T(3n) = O(T(n)).

Suppose now we want to compute L'. Without loss of generality we can assume that n is a power
of 2. Subdivide

L=( A)B

Let

L=(E F).G II"

It is then easy to verify that
E = (A V BD'C)',

F = EBD*,

G = D'CE,

H = D'V GF.

Consider for example the first equation. Think of L as an adjacency matrix of a graph. Partition the
nodes into two sets X and Y, so that A is the adjacency matrix for the subgraph induced by X. Consider
a path between two nodes in X. Partition the path every time it touches a node in X. Each piece will
either be an edge between two nodes in X or will go from a node in X to a node in Y, possibly go to
some other nodes in Y and go back to X. In the first case the path is represented by an entry in A.



7.5. SHORTEST PATH PROBLEMS. 53

In the second case it is represented by an entry in BD*C. The transitive closurc of (A V BD'C) then
represents all paths between elements of X. Therefore, E = (A V BD'C)', which is what we wanted.

To find L' two transitive closures, six matrix multiplications, and two componentwise V's all on
matrices of size n/2 are needed. Therefore

T(n) <_ 2T(n) + 6M(n) + c'n.
2 2

It is then possible to prove that T(n) :_ cM(n) by induction. The basis is obvious if c is large enough.
By the inductive hypothesis,

T(n) 2M( + e ' 2 < I (2c + 6 + 4c')M(n),

since M(n) > n'. The induction goes through if c > c/2 + 3/2 + c' or c > 3 + 2c.

7.5.5. The Four Russians' Algorithm for Boolean fatrix Multiplication.

We are now interested in computing the boolean matrix product. The method of section 7.5.3. will
work. Warshall published one of the earliest algorithms to solve this problem [War62]. It is also possible
to consider the boolean matrices to be integer matrices and use a Plus-Times product algorithm. It will
then be necessary to remember that any nonzero entry is really one. Another interesting method that
lends itself to vector operations was published in [ADK70]. Suppose we want to compute C = AB. As
with the Min-Plus product we divide A into n X m submatrices and B into r X n submatrices. This
time we take m := n/[Iognj. We assume that mn. Define C, = A,Bi.

Then C = V,<i<,. C, and it takes O(n 2m) to compute this. Each row of A, has [lognJ elements
and B, has that many rows. Each row of C, is a boolean combination of the rows of Bi. given by a row
of A,. For notational convenience consider all matrices to be column vectors of boolean row vectors. It
is possible to compute all of the possible boolcan combinations of the rows of B in a reasonable amount
of time. The following procedure does just that:

procedure bcomb(integcr: i);
begincombI0] := 10,..., 01;

for j := 1 to 2 tIo
g n j - 1 do

begin
p := [log jJ;
comb[Ijl combjj - 2'] V by- ,)log j+,+l

end
end;

This procedure requires 0(n 2) time. It is used in the final algorithm:

algorithm Four-Russians(array: a, b, c);
begin co we assume that the matrices a, b, c are organized as vectors of rows oc;

const I = [log nJ;
var comb: array[O..2' - 1] of boolean.-vector;
for i:= I to n do c[i] :1 [0,...,01;
for i := I to n div 1 do co we assume that 11n oc
begin

bcomb(i);
for j := 1 to n do

______ _____



54 7. SEARCHING GRAPHS AND APPLICATIONS

begin
nc := 0;
for k := I downto 1 do

if aUj, k] then nc := ne + ne + 1 else n: nc + nc;
cjj) := ctjl V combincl

end
end

end Four-Russians.

The procedure bcomb is called m times. The inner loop is executed nm times. Each iteration
requires 0(log n) time to compute nc and 0(n) to do the vector "V". Therefore the total time is
O(n3/[log nj). If we count n-bit vector operations as taking unit time, then bcomb requires only 0(n)
time. The vector "V" require only constant time each. It is also possible to read the value of nc as
consecutive bits. So the algorithm requires 0(n2 /lognj) vector operations.

7.6. References.

Eve and Kurki-Suonio [EvK77] have another algorithm for determining the transitive closure that
finds the strongly connected components. Their algorithm has worst complexity O(IVj 3), but is useful
for sparse graphs. An algorithm with average time complexity 0(VI logjVj) is described in [BFM76],
and one with linear expected time in [Sch78].

I
j f!



Chapter 8

Maximum Matchings in Graphs

8.1. Fundamentals.

In the following we assume that G = (V, E) is an undirected, connected graph with no self-loops
and no parallel edges. This is no severe restriction because self-loops and parallel edges cannot be part
of matchings as will become clear from the definitions below, and as the problem for several connected
components can be solved by treating each connected component separately.

Definition:

(a) A set M C E is called a matching if no two edges in M have a node in common.
(b) A matching M is called perfect if IVI is even and IMI = IVI/2.
(c) A matching M is called maximum if there is no matching M' C E with IM'I > IMI.

Remark:
A perfect matching is also called a 1-factor.

Definition:

A (simple) path
V,--- ...- ,

in G is called an augmenting path with respect to a matching M if v, and v2& are free, i.e., not incident
to any edge in M, and exactly every other edge of the path is in M.

There are some classical characterizations for whether a matching is maximum or whether a perfect

matching (which is clearly maximum) exists:

Marriage Theorem (Frobenius-Kbnig-Hall-Rado):

Let E C V, X V2 be a relation. E contains a matching of size IV,4 (and hence, if I l = JV 21. a
perfect matching) if

IE(V)I > IVI for every V C Vt.

Theorem (Tutte 1947):

A graph G = (V, E) has a perfect matching iff IV( is even and there is no 6 C V such that the
number of odd size components (i.e., the number of connected components having an odd number of
vertices) of the subgraph induced by V - S, is greater than ISI.



56 8. MAXIMUM MATCHINGS IN GRAPSI

Theorem (Berge 1957):

A matching is maximum it" there is no augmenting path with respect to it.

We are not going to prove the first two theorems but refer the reader to [Hal48] and [Tut47]. A
proof for Berge's Theorem will follow as a corollary of one of the lemmas presented in the sequel.

If S, T C E we denote by S 0 T the symmetric difference

S ®T = (S -T)u(T- S).

Lemma:

Let M be a matching, and let P be an augmenting path with respect to M (here we look at P as
the set of its edges). Then M & P is a matching, and IM & P - IMI + 1.

Proof: The second, fourth, ... etc. edge of P is an element of M. Hence, as the first and last node of
P are free, it is clear that M ® P is again a matching. And as P contains one more edge not in M
than edges in M, the size increases by one. I

Lemma:

Let M, N be matchings, and let INI > IMI. Then N ® M contains at least INI - IMI
vertex-disjoint augmenting paths with respect to M.

Proof: In the graph C' = (V, N & M) every node has degree at most two because N and M are
matchings. Hence every connected component of G' is either
a) an isolated vertex, or
b) a (simple) cycle with edges alternatingly in M - N and N - M (note that such a cycle must have

even length), or
c) a (simple) path with edges alternatingly in M - N and N - M.

Now let C1,... ,C, be the connected components of C'. It is clear from the definition of the
symmetric difference that N = M ®g C1 & ... & C,. Let Mo be M, and set, for i = 1, ... r,
Mi := Mi-I g Ci. But in the sequence IMoI, 1M1 ,..., IM,! only connected components in category
c) and among them only those which start and end with an edge not in M (and hence have odd length)
increase the number of matched edges. Now such paths are in fact augmenting paths with respect to M
because, as N is a matching, their first and last node must be free under the matching M. As every
such path increases the size of the matching by one according to the previous Lemma, there must be at
least INI - IMI such components and hence augmenting paths. II

Note here that Berge's Theorem is an immediate corollary to this Lemma.

Lemma:

Let M be a matching of size r, and suppose that the cardinality of a maximum matching N is
a > r. Then there exists an augmenting path with respect to M of length

Proof: By the previous Lemma N & M contains a - r vertex-disjoint (and hence edge-disjoint) paths.
One of them must therefore contain at most Lr/(s - r)J edges of M, and hence has a total length
bounded by 2Ltr/( - ?)J + 1. 3



8L. FUNDAMENTIALS. 57

Lemn=:

Let P be a shortest augmenting path with respect to M, and P' an augmenting path with respect to
M 0 P. Then

IP'1 > IPI + IP nl P.

Proof: Let N M ( P g P. As therefore IN I = IMI + 2, by the previous Lemma the difference
M ®& N contains at least two vertex-disjoint (and hence edge-disjoint) augmenting paths, say P and Pt.
Now M N = P ®& P'. and hence

IP P I > IPI1+ IP21 > 21PI

because P was chosen as a shortest augmenting path.
As by definition IP ® P'1 = IPI + IP'J - 21P n PI, we obtain

IP'I > IPI + 21P n P'1 -e IPI + IP n P11,

which we wanted to prove. I
The combination of the previous lemmas now suggests the following scheme for an algorithm to find

a maximum matching:

start with matching Mo = 0;
compute a sequence Mo, Po, MI, P, .... M, P,... where Pj is a shortest augmenting path with
respect to M,, and M+i = M ®& Pi.

Of course we have, by the earlier lemmas, that IP,) _5 JPi+1, but also

Lemma"

For all i and j such that JP "- PjA, the paths Pi and PI are vertex-disjoint.

Proof: Assume for contradiction that i and j are a closest pair of indices such that i < j, 1P1 = IPAI,
and P; and PI arc not vertex-disjoint. As i and j are closest, all IP with i < k < j are vertcx-disjoint
from both Pi and P. Because of this, P also is an augmenting path with respect to M+ I = M ®& Pi
(because none of the Pk with i < k < j touches any of thc vertices in P). which means that JPj] >
1Pil + 1PF n P11, and hence, as JPA = 1Pil, that Pi n Pi = 0 and Pi and PI are edge-disjoint. But if Pi
and P. had a vertex v in common they would also have in common the matched edge of Mi+t incident
on v (note that every node of Pi is incident to a matched edge in Mi+4 !) as all PA with i < k.< j did
not affect v. Hence Pi and P are in fact vertex-disjoint, contradicting our assumption. I

Theorem:

Let a be the cardinality of a maximum matching. Then the sequence

IPoI, IP..
contains at most 2LS'/aJ + I distinct numbers.

Proof: Let r Ls - vf/iJ. As by construction IM, - r, we obtain by our estimate of the length of a
shortest augmenting path that

J D a %_ + I < 2 + < L.,L + J+1.



58 8. MAXIMUM MATCHINGS IN GRAPHS

Hence, if i < r, then IP is one of the odd numbers in {1,3,5, ... ,2LirsJ + 1} which has cardinality
V-+ 1, and IP,+1I,..., IP,-II contribute at most another s - r- I [vrJ distinct numbers, yielding
a total bounded by 2LVJiJ + 1. I

Hence we get the following

Refined scheme for a maximum matching algorithm:

M =0;
while there is an augmenting path wlMh respect to M do
begin

1 := lengn of a shortest augmenting path with respect to M;
find a maximal (with respect to set inclusion) set {Q,,..., Q,} of augmenting paths with respect to
M, all of length L and all mutually vertex-disjoint;
M:= M 9 Q, & ... ( Q,

end.

Corollary:

The loop of the above algorithm is executed at most O(IV11/2) times.

Proof: This is an immediate consequence of the fact that the size of a maximum matching is bounded by
O(IVI). I

We also refer the reader to [HoK73].

8.2. Maximum Matchings in Bipartite Graphs.

We ilw implement the above maximum cardinality matching algorithm for bipartite graphs C =

(V, V2, E) (i.e., the node set of G is partitioned into two sets V and V2, and all (undirected) edges
are between a nodo. in V, and one in V2). Note that an augmenting graph in a bipartite graph always

I ( connects a free node in V, to a free node in V2 .

,: first start a simultaneous BFS at all free nodes in V, which at every odd step proceeds along all
unmatched edges which it has reached at its foremost level, and which at every even step proceeds from
a node by the (unique, if present at all) matched edge incident to that node. This simultaneous BFS
detects the length of a shortest augmenting path when it reaches a free node in V2, and at the same time
determines a subgraph of G which contains all shortest augmenting paths (with respect to the current
matching M):

for all v E V, U V2 do label[v :=0;
R := 0; 1L:= 1

co at stage I of the simultaneous BFS. the nodes in R (resp., L below) are those nodes in V2 (resp.,
Vt) visited for the first time by the BFS, and hence at a distance (via an alternating path) of I from a
free node in V, oc;
for all free nodes v E V, do

for all V*-u E E do
begin

label (i:= 1; R := R U(}
end;

while R 34 0 and R contains no free node do
begin

L =0; 1-+1;

___ __ __



8.3. MAXIMUM CARDINALITY MATCHING IN CENERAL GRAPHS. 59

for all w E R, v-t E M do
if labeliv] = 0 then begin L:= LU{v}; label v]:= I end
co note that in this step we can never reach free nodes in V because we are using only matched
edges from V2; hence if label[v] = 0, then v has nut been visited by the search before oc;

R := 0; 1 := l + 1;
for all v E L, v-uw E E - M do

if label[w] = 0 then begin R := RU{w}; tabeL[u] := I end
end;
R := the set of free nodes in R;

If at the end of this routine the set R is empty then obviously no augmenting path exists, and the
matching M is maximum. Otherwise the subgraph given by all edges v-w with labelt(w] = label[v] + 1
contains all shortest augmenting paths as follows immediately from the properties of BFS. Furthermore,
as G is supposed to be connected the above segment of the algorithm takes time O(LE).

We now determine, by a repeated DFS in the subgraph determined above, a maximal set of vertex-
disjoint shortest augmenting paths. Note that their length is I. The DFS uses a stack with the obvious
operations on it.

stack : ;
for all free nodes v E V, do
begin

co we try to construct a shortest augmenting path starting from v and vertex-disjoint from all such
paths constructed before oc
push(v);
while stack 3 0 do
begin

w := top(stack);
if there is an edge w-w' with labcl[o'] = label[w] + 1 then
begin

push(u');
if o' E R then
begin

co a new shortest augmenting path has been found oc
print(atack); stack 0

end;
label[o'1 = 0 co this marks to' as visited by the DFS oc

end
else pop

end
end;

Obviously this algorithm produces a maximal set of vertex-disjoint augmenting paths of length i, and
the time it requires is again O(IEI). Together we have achieved an implementation which requires for
every phase described in the above scheme time linear in the number of edges of G. With the bound on
the number of such phases we hence obtain

Theorem:

There is an algorithm for the maximum cardinality matching problem in bipartite graphs which
requires time bounded by o(IVI'1 'IEI).



60 8. MAXIMUM MATCHINGS IN CRAPHS

8.3. Maximum Cardinality Matching in General Graphs.

We use the same general approach as pointed out in section 8.1. for the maximum cardinality
matching problem in general graphs, i.e., we try to design an algorithm consisting of phases where in
each phase a maximal set of vertex-disjoint shortest augmenting paths is used to increase the size of the
matching.

We are here only going to outline the basic ideas of such an implementation, and refer to [MiV80]
for more details.

The algorithm performs a simultaneous BFS (starting at all nodes free under the current matching)
which, as in the bipartite case, alternates between unmatched and matched edges. Each time before a
new level is added to the BFS, the algorithm checks for bridges. A bridge is an edge such that both
its endpoints have been reached by the BFS, and both in steps involving the same kind (matched or
unmatched) of edges. Also, if they were reached by matched edges, the bridge must be an unmatched
edge, and vice versa.

For every bridge, the algorithm then checks by backtracing whether there are, from the two endpoints
of the bridge, two vertex-disjoint alternating paths to free nodes. If such paths are found then in fact a
shortest augmenting path has been found, and it is erased from the graph, together with all edges incident
to nodes on the path in order to avoid that any of its parts is visited by the BFS later on. The backtracing
is done by running two DFS's (one from every endnode of the bridge) in parallel and in a way such that
the nodes furthest down in the DFS trees are at levels in the BFS trees differing by at most one.

If the two DFS's fail to discover an augmenting path they actually discover a blossom, that is an odd
length cycle with a maximal number of matched edges in it which became closed by the bridge. Such
a blossom is shrunk to a pseudo-node by introducing path compression pointers from all its nodes to its
root which is the unique node in the cycle not incident to a matched edge also in the cycle: In this way,
edges in the blossom need not be traversed any more in later searches for augmenting paths. Blossoms
can occur one within another. A blossom is reexpanded if an augmenting path is detected which contains
the pseudo-node belonging to it.

A careful implementation of these concepts guarantees that in every phase each edge of G has to
be visited only a constant number of times, and also that the overhead for all operations is bounded by
O(IEI). For details see [MiV80]. We obtain the following result:

Theorem:

There is an O(IVI" 21EI) algorithm for the maximum cardinality matching problem in general graphs.

,.4. Maximum Weight Matching Problems.

Another generalization of matching problems considers (undirected and connected) graphs G
(V, E) where every edge is assigned a weight c(e) > 0. The neighi c(M) of a matching M C E is
then dcfincd to be

c(M):= C(e).

A matching M is called a maximum weight matching if there is no matching M' of (G, c) which has
weight c(M') > c(M).

Fo the maximum weight matching problem there are no results known equivalent to those presented
in section 8.1. for the maximum cardinality problem. Instead, the most efficient algorithms known for this
problem use the dual problem that arises when one formulates the maximum weight matching probleth
as a linear optimization problem. 'Iiis dual problem serves to select a sequence of augmenting paths in
order to iteratively increment the weight of the matching. For more details see [Law76]. We summarize:



8.4. MAXIMUM WEIGHT MATCHING PROBLEMS. 61

Theorem:

(a) There is an algorithm for the maximum weight matching problem of timc complexity O(IV IS).
(b) There is an algorithm for the maximum weight matching problem of complexity O(IVIIE logIVI).

For the first of these algorithms, we refer to [Law76], for the second to [GaM811.

I (



Chapter 9

Maximum Flow in Networks

9.1. Flows and Cuts.

A network is a digraph C = (V,E) with no self-loops and parallel edges (anti-parallel edges are
permitted), and with two distinguished nodes, the source s and the sink t 3 s. In additition, every edge
e E E is assigned a nonnegative capacity c(e). A flow in C is a real function f from E such that
(i) for every edge e E E its value is bounded by the capacity of the edge: 0 < f(e) < e(e); and
(ii) for every node v different from s and t, Kirchhoff's law is satisfied:

f (e) - f f(e') = 0.
e={,w)EE e,=(w,,,)ER

By the totalflow F = F(f) we mean the value of the above sum at the source s, i.e.

F f 1(e) - f f(e').
e=(,w)EE e'=(w,.)EE

It should be clear that this sum is the negative of the corresponding sum at the sink t.
A flow f in G is called mnaxinum if F(f) is maximum for all flows in G (with capacity c).

Definition:

A cut of the network G is a subset S of V such that 8 E S and t 'S.

For a cut S, let 9 denote the complement V - S of S, and let E, be the subset of edges in E
from nodes in S to nodes in 3 (E, s is defined analogously).

Lemma"

For every cut S and every flow f we have

F(f) = f(e) - F f(e).
CE RS,; CEF,,

Proot: Note that if we sum

F,.= f (e)- f (e')
e==(v,w)4EE c,=(,,,)EE

• • • • • uu J



g.1. FLOWS AND CUTS. 63

over all v E S we obtain F. which equals F(f) as all the other F. are zero by condition (ii) for flows.
However, if we rearrange the terms in the sum all those f(e) where both endpoints of e are in S cancel
because they appear exactly twice and with opposite sign, and we are left with the right hand side of the
equation claimed ii the Lemma. I ,

If we set the capacity of a cut S to be

C(S):= E c(e),

we immediately obtain that

F < C(S) for every cut S.

This upper bound can in fact be achieved as stated in the following

Theorem (Ford, Fulker i 1956):

max{F(f); f flow in G) - min{C(S); S cut in G}

The proof of this Theorem will follow from the next lemma (also see [FoF56]).

Definition:

A sequence
8 = V-IV- V-IV

of edges v_.-l-vi without node repetition is called an augmenling path to v, with respect to some flow
f if for all i, i= 1,..r, either
a) e = (vi_-,, v,) E E and c'(e) c(e) - f(e) > 0, or
b) e = (v,,v,_-) E E and c'(e):= f(e) > 0.

( An augmenting path (with respect to f) is an augmenting path to the sink i.

It is clear that if there is an augmenting path P with respect to a flow f then f can be increased
along this path by b = min{c'(c); e edge in P} in the following way: If an edge e in P is directed from
s to t its flow value is increased by 6, and if e is directed the other way, it is decreased by the same
amount. This change clearly maintains Kirchhoff's law for all nodes different from the source and sink,
and it increases the total flow by 6.

Lemma:

A flow is maximum iff it has no augmenting path.

Proof: It only remains to show the sufficiency of the condition in the Lemma. Hence suppose that a
flow f has no augmenting path, and let S be the set of nodes v reachable from the source s by an
augmenting path to v. Then s E S as the empty path is an augmenting path (to s), and t f'S as there
is no augmenting path in G with respect to f. The definition of S also implies that for every edge
e E Es, , the flow f(e) equals the capacity c(e) (because otherwise the endpoint of e would also be a
member of S), and, for the same reason, that for every edge e E E,, the flow f(e) is zero. Therefore
we obtain, by the previous Lemma, that in fact F(f) = C(S) from which we can conclude that f is
maximum as, by the above Corollary. F(f') < C(S) for every flow f'. I

Note that as a corollary we have also obtained a pro6f of the Min-Cut-Max-Flow Theorem stated
earlier.

The results preented so far suggest to construct a maximum flow by starting with some flow satisfying
conditions (i) and (ii), and then trying to successively increase it along augmenting paths until such a path



64 5. MAXIMUM FLOW IN NETWORKS

nc longer exists in which case the resulting flow is guaranteed to be maximum. This idea also underlies
the initial method by Ford and Fulkerson to construct a maximum flow. But care has to taken in selecting
the augmenting paths [Zah73]. As a matter of fact, Ford and Fulkerson pointed out an example (with
irrational edge capacities c(e)) for which the simple method (which consistently makes "bad" choices) fails
to terminate and even to converge towards the actual maximum flow. But also if the edge capacities are
all positive integers the edge selection is critical for the efficiency of the algorithm as demonstrated by the
following example. Let M be a (very) big positive integer such that the size of its binary representation
dominates the size of the whole network.

a

M M

a

M

b

If we start in this example with a zero flow and select as augmenting paths alternatingly s-a--b-t
and s-b-a-t it takes the algorithm G(M) augmentations to reach the maximum flow, and henc, a
running time exponential in the size of the input.

9.2. The Dinits Algorithm.

We now show how to overcome the difficulty indicated above by a method using so-called pre-flows.
Call an edge v-w in the network (G, c) augmentable from v to w if
(a) e = (v, w) E E and f(e) < c(e), or if
(b) e=(w,v)EE and f(e) > 0.

The following algorithm divides the network (G, c) which has some flow f defined on it, into disjoint
layers Vo,..., V, C V using a BFS:

Vo := {s}; i := 0;
repeat

T:= {v; there is an edge w-v augmentable from w to v with w E Vi and v 9'U =0 V);
i:=i+1; V := T

until T = 0 or t E T;
if T = 0 then stop "flow maximum" else V, := {t};

The layered network G'(C, c, f) now consists of all the nodes in the Vj (the final value of i is called
the length of the network and denoted by 1) and the edges in any of the E., j 1... , I with

E. := {v -- w; v E Vj-_, t E Vj, and v-w E E augmentable from v to w}.

Note that the direction of the edges in the Ej may be different from the original direction in E. In
addition every edge e = (v, w) in the Ej is assigned the capacity c'(e) which is the sum of the values
c(e') - f(e') respectively f(e') over all edges e' between v and u which arc augmentable from v to tw.

Once we have a nonzero flow f' in the layered network G'(G, c, f) it is clear how to augment the
flow f in (G, c): If the flow along an edge in the layered network is in the same direction as in G it is
added to f(e), and otherwise subtracted (a little bit of care has tj be exercised if there are two antiparallcl
edges between some nodes v and tw in (C, c, f) which are both augmentable from v to w and have been
replaced by one edge in the layered network).



9.2. TimE DINITS ALGORITHM. 65

Definition:

A flow f' in a layered network is maximal if every path from 8 to t in the layered network contains
an edge e with f'(e) = c'(e).

We now propose to construct a maximum flow in a network (G, c) in phases which consist each of
the following steps:

start with flow f (initially the zero flow);
construct the layered network G'(G, c, f) together with the capacity c';
find a maximal flow f' in the layered network;
augment f by f.

As the layered network G'(G, c, f) contains all shortest augmenting paths with respect to f (some edges
may be reversed with respect to G) we obtain a similar situation as for the maximum capacity matching
problem.

Lemma:

The layered network of the k-th phase has length at least k.

Proof: The proof is by induction on k. For k = 1 it follows from the condition that the sink t is different
from the source s. For the inductive step we note that, in the k-th phase, there can be no augmenting
paths of length < k - 1, and also that the maximal flow constructed in the k - 1-st phase saturates at
least one edge on each augmenting path of length k - 1. As all these paths appeared in the k - 1-st
phase, no augmenting path of length < k is left at the beginning of the k-th phase. But this implies that
the k-th layered network has length at least k, and completes the induction. I

Corollary: The number of phases (as given in the above schematic algorithm) is bounded by Ilv.

In the following, we shall be concerned with exhibiting various efficient algorithms to construct
maximal flows in layered networks. Such flows are also called preflows.

Dinits" Method:

1'he first solution is due to Dinits [Din70]. It constructs a maximal flow by an iterated DFS from the
source to the sink. Each successful search determines a new augmenting path, the value of the additional
flow is given by the minimal capacity of an edge on the path.

construct G'(G, c, f) and c;
for all edges e in G' do f'[e] := 0;
iihile there remains an edge from the source s do
begin

construct by a DFS a path P from a to t and delete during this DFS all dead-end edges
co an edge is a dead-end edge if the DFS cannot proceed from its endpoint ($ t) because it has no
successors oc;
A := min{c'[e]; e edge in P};
for all c E P do
begin

f'je) := f'e + A;
if c'(cj = A then delete e

end
end.



66 g. MAXIMUM FLOW IN NrtTWOIIKS

Clearly the algorithm produces a maximal flow because it saturates at least one edge on every path
from the source to the sink. The time requirement per phase is O(IV IIEI) because between any two edge
deletions there are at most I steps where I is the length of the layered network, and of course I < WIV.
Hence we conclude

Theorem*

Dinits' Algorithm constructs a maximum flow in an arbitrary network in time O(IVI 21EI).

9.3. The Malhotra-Pramodh Kumar-Maheshwari Algorithm.

More efficient algorithms for the maximum flow problem are also based on the above subdivision
into phases and the construction of maximal preflows. But they don't use augmenting paths. The first
such algorithm is due to Karzanov [Kar74]. We shall here, however, present another algorithm of the
same asymptotic complexity which is easier to describe [MPM78].

Given some preflow f' in the layered network G', let us define the potential P(v) of some node v to
be the minimum of the sum of all remaining capacities c'(e) - f'(e) taken over all edges e leaving v, and
the same some over all edges entering into v. Clearly, P(v) is the maximum amount by which the flow
through v can be increased, if we look just at v. MPM algorithm can now be described as follows:

while P(s) and P(t) are 3 0 do
begin

let v be some node with minimal P(v);
starting from v, push additional flow of P(v) units towards t, update the flow function accordingly,
and delete edges which become saturated;
in the same way, starting from v, pull additional flow of P(v, units from s; I
update P;,

while there is v s, t with P(v) = 0 do
begin

remove v and its incident edges;
update P

end
end.

The pushing and pulling of additional flow is done in a way such that at -very node that gets touched
the edges are scanned in the order in which they appear on the adjacency list, and as much additional
flow is added as possible, as long as the supply lasts. In this way, at most one outgoing (resp., incoming)
edge receives nonzero additional flow without becoming saturated at the same time. Hence the time
bound for one pass of the outer loop is

O(JVI + the number of edges getting saturated (and hence deleted)).
As in every such pass a node gets removed, we obtain a time bound of O(IEJ + 1V12) per phase.

and hence the

Theorem:

The MPM maximum flow algorithm has time complexity O(1V13).

As we remarked already earlier, the Karzanov algorithm [Kar74I has the same asymptotic complexity.
A somewhat more efficient algorithm for the maximum flow problem which has time complexity
O(IVI 2 IEI"12) is described in [Che77]. Other efficient solutions can be found in [GaN79I. [Shi78I (both

mi



9.5. APrLICATJONS. 67

of complexity 0(IVIIE log 2 IV1)), and in [Slc80j (complexity O(IVIEI logiV1)). These latter solutions
make use of more elaborate data structures to find maximal preflows.

9.A. Extensions and Restrictions.

We'd like to shortly mention some variations of the basic maximum flow problem. For a more
detailed discussion we refer to [Eve79] and [Law761.
(a) In addition to the capacity function c we may have another function b on the edges representing a

lower bound for the flow f through each edge. In this case we would demand b(e) < f(e) <_ e(e)
for every edge e, and of course Kirchhoff's law as before for every node other than the source and
sink. Contrary to the situation of the basic maximum flow problem where the zero flow was a legal
flow, a legal flow might not exist at all in a network with arbitrary lower bounds. However, we can
reduce the test for the existence of (and the construction of) a legal flow to another maximum flow
problem with zero lower bounds and size proportional to the size of the original problem. Once we
have established a legal flow we may use any of the method , discussed above (with the appropriate
modifications in the definition of the capacity c' of the edges in the layered network) to construct a
maximum flow.

(b) Instead of looking for a maximum flow, we might be interested in a minimum flow. But clearly, as
F, = --Fe, a minimum flow from s to t is a maximum flow from t to 8.

(c) Often the capacities of the edges in a network are either zero or one. Such a network (and we even
allow here parallel edges) is called a 0-1-network. Note that in a layered network coming from a
0-i-network, every edge on an augmenting path becomes saturated. Also note that a layered network
which allows a big preflow, intuitively has to be wide because every edge accomodates at most one
unit of flow. Using these properties, one can derive the following

Theorem:

For 0-1-networks, the Dinits algorithm has time complexity O(1E 3l2).

(d) A special case of 0-1-networks are those with no parallel edges (also called 0-1-networks of type 1).
For them, we obtain

Theorem:

For 0-1-networks of type 1, the Dinits algorithm has time complexity O(Vj11 3 ).

(e) An even more restricted class of 0-1-networks are those where every node has either at most one
outgoing or at most one entering edge. These networks are called 0-1-networks of type 2. It is
possible for them to derive an even better upper bound:

Theorem:

For 0-1-networks of type 2, the Dinits algorithm has time complexity 0(VI"'1t2El).

The basic idea for the proof is again a bound on the length of the corresponding layered networks.

95. Applications.

We finally state some applications of the algorithms for the maximum flow problem to other problems.
Again we only list the results and refer for the details to [Evc79 and [Law76.

II



68 g. MAXIMUM FLOW IN NETWORKS

(a) The vertcx-connectivity of a directed graph is the minimal number of nodes that has to be removed
from it such that there remain two vertices a and b which are no longer connected by a path from a
to b. If there is an edge from every vertex to every other vertex, we set the edgc-connectivity to be
IV I - 1 by default. An analogous definition is made for undirected graphs. The determination uf the
vertex-connectivity of (directed or undirected) graphs can be reduced to a maximum flow problem,
in which basically every node of the graph is split into two nodes for the network connected by an
edge with unit capacity. The algorithm then checks, for every pair (a, b) of nodes in the graph, the
flow from the node corresponding to a to that corresponding to b in the network. As the network
is of type 2, this can be done in time O(IVI"j2IEI) for every pair, and hence in a total time of
O(IVI 5 21E[). However, a slightly better bound can be obtained if we observe that not all pairs of
nodes have to be checked. As a matter of fact it suffices to check k nodes against all others if by
then we have detected two nodes for which the removal of < k nodes is enough to separate them.
We then get the

Theorem: The vertex-connectivity of a (directed or undirected) graph can be determined in time
O(IVI11/2 IE12 ).

(b) If we are only interested if the vertex-connectivity is at least k for some given k, we can stop each
flow problem once the flow reaches k units.

Theorem: It can be determined in time O(k 3EI + k/VIIEI) (that is in time O(kIVIIEI) if k =

O(1VI112)) whether a graph is k-vertex-connected.

(c) The edge-connectivity of (directed or undirected) graphs is defined analogously to the vertex-
connectivity. However, the reduction to a maximum flow problem is here completely trivial. Also,
we have to solve only IVi - 1 network flow problems. A further possibility is to run these network
flow problems in parallel, one augmenting path at a time, until one of the flows cannot be increased
any more. Thus we obtain

Theorem: The edge-connectivity c of a (directed or undirected) graph can be determined in time
(i) O(IVIIEI min{IEI1 /2 , IV12 1

1}), or
(ii) O(CIVIIEI).

(d) As a final application, we mention the maximum cardinality matching problem in bipartite graphs.
The reduction to a maximum flow problem is straightforward, and we obtain, using Dinits' algorithm,
the same bound as derived in section 8.2., namely O(IVII/ IE).



Chaper 10

Problems

PROBLEM 1:
Give some examples of algorithms which you would not consider "combinatorial".

IPROBLEM 2:
Prove the following formulae for the function T defined by

T(n) =sT(-) + an", if n = mk > 1,

T(I) =d

(whcre a > 0, e > 0, s > 0, and m an integer > 2):

'e)(ne), if s < m

T(n) 8(n' log, n), ifs = ra

,O(n l
o

g '), if s > m'

(assume that 7'(n) = 0 for n not a power of m).
Give an explicit solution to the above recurrence (still assuming n = ink).

PlitOLEM 3:
In a situation analogous to the one underlying the previous problem but where n is not necessarily

a power of rn, one might get a recurrence like

T(n) =sT"( ] + an', if n > 1

T(I) .:d. i

Ustually there are two approaches to this problem:
(1) embed a problem of size -i into one of size it' where n' = m -ing is thc next larger power of m;
(2) embed a problem of size .n into one of size n' where n' = fl]iM is the next larger multiple of m.

Compar these approaches and the bounds on ihe resulting complexitiestl

(Hint: use the facts that
]= [ and _ I+.)

t p M m



70 to. PIloil,.KMs

P~itOBiiiM 4:

When analyzing the Sch6nhagc-Strasscn algorithm for fast integer multiplication we arrive at a
recurrence relation for its time complexity T of the form

T(n) =2T(n'/I) + clog n, if n > 3

T(2) =T(I) = d.

Solve this recurrence using the techniques presented in class (assume in light of Problem 3 that n is of
an appropriate form).

PR1OBI,I,0M 5:

In this problem you are asked to consider the implementation details of binomial trees and queues.
(a) Describe an implementation and show how the operation of merging two binomial trees would be

done.
(b) Show how to delete the smallest element in a set represented by a binomial queue using your

implementation in (a). Use the algorithm of merging binomial queues mentioned in class.
(Hint: use an eldest son, next brother representation)

PtOfBI.I.3M 6:

Now we are interested in the operation of deleting some arbilrary element that we have a pointer
to. Modify your implementation of binomial queues in Problem 5 so that it allows this and the other
operations to be done efficiently. Your implementation should use only two pointers per node. Describe
how the delete arbitrary operation is done.

PitOILEM 7: I
Prove the Decomposition Lemma stated in class.

PtIOIIIIM 8:
Analyse both time and space complexity of an algorithm for computing 2' on a RAM. Use both

the unit and logarithmic cost criterion.

)escribe how to modify the Patcrson-Pippengcr-Sch inhage median algorithm presented in class so
that you obtain an algorithm for arbitrary selection (i.e., an algorithm for finding the i-th largest in an
n-element set for any i with I < I < n), and determine its complexity.

l'lOill,nM 10:
Let (U, -<) be a totally ordered universe, and 4(s) >( 0 a weight for every a E U. Describe an

efficient algorithm based on the BIlum-Iloyd-Pratt-Rivest-Tarjan selection algorithm presented in class,
which, for any given finite S C U and wo > 0. determines the maximal (with respect to C) subset M
of smallest (with respect to -<) elements of S such that

Z u(B) < to,
.EM

and analyze its complexity (in terms or number of comparisons).

L-



10. PROBLEMS 71

PROBLEM 11:Suppose you arc given k numbers io = 0 < il < ... < i, < ik+1 = n+lI and you want to

select simultaneously the il smallest, the i2,. .. , it smallest clement of the n-element set S. Develop a
inultiple seleciion algorithm which solves this problem using at most

o(,tlogn - Z(ij+l - ij) log(i,+, - i,))
i.-o

comparisons.

PROBLEM 12:
Consider the problem of finding the median of n elements on a computer with limited space.

Specifically, suppose that data elements arc much bigger than other things, so that there is room to store
[n/21 + I elements and a linear amount of other stuff that can not encode data elements. Find an
algorithm subject to these constraints that finds the median while doing only linearly many comparisons,
for the case where n = 2A - 1.

(Hint: Use the solution to the previous problem with ij = 2j - I for j = 1, ... , k - 2, and
i+k-2 = n - 2' + 1, also for j = 1,.. ., k - 2, and apply it to the first rn/21 elements read into
memory. Then iteratively input as many elements as there is space left, and discard those which cannot
possibly be the median.)

PROBLEM 13:
Give in PASCAL-like notation an O(e log log n) time hnplementation of the minimum spanning tree

algorithm MST2 discussed in class. You may assume that the vertices of the graph are represented by the
integers 1, ... , n. The input data consist of an (unordered) list of triples (v, w, c(v, w)) which contains
every edge exactly once ((v, w) = (w, v)). I

(Warning: You may not assume that arrays are initialized in a special way!)

PitOBIIM 14:
Develop a linear time minimum spanning tree algorithm for planar graphs! (Planar graphs are those

which can be drawn in the plane without edges crossing one another.) Employ a similar setting as in the
first phase of algorithm MST2 and make additional use of the following facts:
a) A planar graph with n nodes has at most 3n - 3 edges (no parallel edges are allowed; if n > 3 the

number of edges is even bounded by 3n - 6).
b) If an edge in a planar graph is shrunk to a node the graph remains planar.

PROBEM 15:
Construct an example which shows that your approach in the previous problem does not work for

arbitrary graphs with e = 0(n) edges.

PROBLEM 16:
Prove an 10(mlogn) lower bound for the unweighted UNION-FIND algorithm which uses path

compression, for a sequence of n UNION's and m >_ n (intermixed) FIND's.
(Flint: Remember the two different ways to look at binomial trees!)



72 10. PIIOlElMS

lItIo()I ,t, 1 7:

Give, in a PASCAL-likc language, an implementation of the UNION-FIND operations with weighting
heuristic and path compression which uses only 0(I) auxiliary space (this means that you cannot use a
stack for internediate storage of the FINI) path; try instead to store this FIND path in situ). Assume
that cach element is represented as an clement of
type pair=record eli: integer; next: tpair end;
and that tie pointer of the pair for the root of a tree points to a pair containing the size of the tree and
a nil-pointer.

P'ROIILEM 18:
Let (G, c) be a connected, undirected graph with nonnegative edge weight c. Let C be a cycle in G,

and e an edge in C such that c(e) is maximal among all edges in C.
a) Prove that there is a minimum spanning tree for (G, c) which does not contain e.
b) Prove that if c(e) is strictly larger than c(e') for all other edges e' in C, no minimum spanning tree

for (G, c) contains e.

PROIIlEM 19:
L.et G be a connected, undirected graph with n nodes and e edges, and let T be a (rooted) spanning

tree for G. Design an algorithm of time complexity O(e(n)) which, for every edge {v, w} in C and not
in T, determines the lowest common ancestor of v and w in T (the lowest common ancestor of v and w
is the node of 7' where the unique paths from the root of T to v respectively w part).

(Hint: In a post-order search of 7' you hit exactly twice a node incident to a non-tree edge of G.
Ihe second time, the lowest common ancestor is on top of the nodes you have visited so far.)

ILROIIIEM 20:
Let (G, c) be a connected, undirected graph with nonnegative edge weight c, and let T be a spanning

tree for G. Using the results of the two previous problems, describe an O(c(n)) algorithm which checks
whether 7' is a miniumnin spanning tree for (G, c).

l IOIIIeM 21:
l)escribc how to modify the algorithm reg.pat presented in class such as to find for every position j

in texrt
a) the minimal i such that teztij E La;
b) the maximal i such that textij E. ,La.

(Hint: Associate in the simulation of the pattern automaton M,, an appropriate count with every
state.)

lltOII),,"M 22:
Suppose a = aja2 ... a, is a string. A substring of a is a string c of the form c = ajai,. . .a,

where 0 < it < i 2 < ... < in < r + 1. That is, the letters of c occur in a in the same order but not
necessarily consecutively. Find an o(lallbl) algorithm that finds the longest string that is a substring of
both a and b.

PioI.IM 23:
(a) Find a linear, ofrline algorithm that finds the least common ancestor (I.CA) of nodes of a complete

binary tree. The least common ancestor of two nodes is the node that is an ancestor of both nodes

Ai• 1.



10. PlOuLKMS 73

and is a descendent of all such nodes. All nodes in a complete binary tree have zero or two children.
All of the leaves of a complete binary tree arc at two adjacent levels. For an off-linc algorithm, the
tree and all queries are available before any query must be answered. The algorithm must answer q
queries about an n node tree in O(71 + q) time. (Hint: It is possible to use radix sort to sort a nodes
in O(n + a) time.)

(b) Extend your algorithm in (a) to work for balanced trees. A balanced n-node tree has depth O(log n).
(Flints: The algorithm should still be linear, but the constant will depend on the constant in the
depth. Conceptually, extend the tree to make it complete.)

(c) lExtra creditl Consider the set of all union trees. "lliat is trees that are created by the UNION
algorithm with the weighting heuristic and without path compression. Prove that any such tree can
be made into a balanced binary tree in linear time.

(d) You are to show that the I-CA problem for general trees can be reduced to that for union trees.
Consider a general tree 7'. It has a corresponding union tree, U. The nodes of U correspond to the
leaves of T. Consider an internal node, v of 7'. Suppose that all of the sons of v correspond to sets
in U. Then modify U so that there is a set that is the union of all of the sets that correspond to
sons of v. Make v correspond to die node representing this set.
(i) Show the sets corresponding to the sons of v are distinct. Therefore the procedure above is well
defined.
(ii) Show that U can be computed from ' in linear time.
(iii) Suppose that a and b are leaves of T that correspond to A and Bl in U. Let C be the least
common ancestor of A and I in U. Show that U and T can be preprocessed in linear time so that
the least common ancestor of a and b in T can be found in constant time, given C.

PItOBLM 24:
Prove the following characterization given in class:
A connected, undirected graph is biconnected iff every pair of distinct edges lies on a common simple

[ ( cycle.

PROBLEm 25-:
Prove that in a connected undirected graph the articulation points connect the blocks in form of a

tree.

PROBLEM 26:
Give a nonrecursive implementation (PASCAL-like) of the DFS routine (for directed and undirected,

not necessarily connected graphs) using a LIFO queue.

PlOll,M 27:
let G = (V, E) be an undirected graph. A set C C V is called a clique iff any two distinct

v, w. E C are connected by an edge in E. I.ct C be a clique, and F a DES-forest of G. Prove that
all w E C lie on one branch of a tree in h'. Do they occur contiguously on this branch? Justify your
answer.

PRIOIJILEM 28:
A Euleria, circuit in a connected undirected graph G = (V, E) is a circuit which contains each edge

of the graph exactly once.
(a) Prove that G has a Eulerian circuit iff every node has even degree (i.e., an even number of edges

incident upon it).



74 10. IltmnI.MS

(b) l)csign an algorithm of complexity O(IEI) which determines a Eulerian circuit of C if there is one.

eltlom,M 29:

Give an example of a planar graph (without sclf-loops and parallel edges) where every node has
degree at least 5.

PILOnllfEM 30:
(a) Give the formulas for a coordinate transformation from the surface of the sphere onto the plane

which transforms the plane drawing of a (finite) graph on the sphere into a plane drawing in the
plane with a prespccified outer face.

(b) Give a meromorphic transformation of the (complex) plane (i.e., a transformation of the form
f(z) = E. >. az for some integer m converging in some region of the plane) which achieves
the same task for a plane graph given in the plane.

llit()l$1,l M 31:

The dual graph of a plane graph G is given by a node for every face of G and an edge connecting
two nodes for every edge of G which is on the common boundary line of the two faces corresponding to
the nodes.
(a) Prove that the dual of a plane graph is planar.
(b) Prove that the dual of the dual is isomorphic to the graph itself.
(c) Prove that every plane graph has either a node of degree < 2 or a face with at most 5 edges on its

boundary.

PROMIIIIM 32:
)iscuss how to obtain (using die planarity testing algorithm presented in class) an adjacency list

reprcsentation of a planar graph G where for each node the incident edges appear in the adjacency list in
the order given by their clockwise ordering in some plane drawing of G (modulo the starting direction).

PIIOIII:M 33:
a) Find an O(IVII,I) algorithm to solve the single source shortest path problem if edges with negative

weights, but no negative weight cycles are allowed.
b) Modify your algorithm so that it solves the single source shortest path problem or finds a negative

weight cycle given a graph with possibly negative edge weights.

PitOnI),,I; 34:

Find a linear time algorithm to 6-color a planar graph. A graph is n-colored if every node is assigned
one of ni colors and no two nodes connected by an edge have the sane color.

itIOnI$1tF 35: "

a) Prove that any planar graph can be 5-colored. (-lint: If a vertex has degree five, contract it and two
of its neigbhors. Use without proof that this preserves planarity.)

h) Convert your proof into an algorithm to 5-color a planar graph. Analyze its complexity in terms of
IV 1, the number of vertices in the graph.

c) F.ind a linear time algorithm to 5-color a planar graph. (1-int: Use without )rN)f the fact that every
planar graph has a vertex of degree four or less or it has a vertex of degree five with four neighbors j
all of degree at most 11.)



10. PIROBILEMS 75

lPROBLEM 36:
Simulate the Hopcroft-Tarjan planarity testing algorithm on the following graph. There are 7 vertices

v 1 ,...,v 7 . There are 15 edges. Fach vertex vi is connected to vi+m for i = 1,...,7 - m and
m = 1,2, 3. Show all phases of the algorithm.

Problems for the Closed Book Final:

PROBLEM 37:
Investigating odd-even merging the following recurrence arises:

fk =2 - I - fk-,, fo 0.

What is the solution?

PROBLEM 38:

Give die position tree for the string aaaabaaabaabab$.

PROBLEM 39:

Prove that an undirected graph is biconnected if and only if for every triple a, b, c of nodes there is
a simple path from a to c through b.

PROBLEM 40:

(a) How would you have to define the capacity of a cut in a network with (nonnegative) lower bounds
such that the Min-Cut Max-Flow Theorem holds?

(b) Give a detailed proof of a "Min-Flow Max-Cut" theorem (see what function of a cut is maximum).

PROBiEM 41:
Call the sum over the degrees of the free nodes with respect to some matching 7n the deficiency

d(M). Give an efficient algorithm to find a matching with minimum deficiency. You may describe a
reduction to some problem discussed in class. What is the complexity of the algorithm?

PROBLEM 42:

Give a program for a version of Dijkstra's shortest path algorithm which, for some given node a, in
addition to all distances dis[a, b], also determines the minimal number of edges on a shortest path from
a to b, for every node b. Establish the correctness of your algorithm and its time complexity.

PIOIILEM 43:
Let G = (V, E) be a digraph with a (nonnegative) distance function d on the edges, and suppose

that we want to find, for some fixed a E V, the length of a second shortest path from a to b, for every
b E V. (Such a second shortest path need not be simple, but of course it reaches its endnode just once!
It may also have the same length as a shortest path, we only require it to be different from some shortest
path and having minimal length among all such paths.)
(a) What is the length dis2ja] of a second shortest path from a to a?
(h) Suppose some shortest path from a to b E V contains just one edge. What is dis2[b?
(c) Give an algorithm to compute dis2b] for all b E V.
(d) I)etermine the time complexity.



Chapter ]I

References

IADK7OIARLIAZARov, V.L., IrNvrS, E.A., KRONRoD, M.A., FARADIMV, l.A. On Economical
Construction of the Transitive Closure of a Directed Graph.
Soviet Math. D)okl. 11 (1970), p. 1209-1210

[AIIU74IAIio, A.V., llO1CROFt', .. , ULLMAN, J.).: The Design and Analysis of Computer
Algorithms.
Addison-Wesley, Reading, Mass., 1974

[AYa75] YAo, A.C.: An O(1/,' log logVI) Algorithm for Finding Minimum Spanning Trees.
Information Processing Letters 4 (1975), p. 21-23

[BeW78] IBI:INIEKI,:, L.W., WILSON, R.J. (I'DS.): Selected Topics in Graph Theory.
London-New York-San Francisco: Academic Press 1978

[lBFM76]IIAONiAItZ, P.A., Fis(;mit, M.J., MEYtFL, A.R.: A Note on the Average Time to Compute
Transitive Closures.
MIT/l.CS/fM-76, Sept. 1976

[BFP731 1IIuM, M., FIOYO, R.W., IA'rr, V.R., RIVEST, R.L., TAIAN, R.E.: Time Bounds
for Selection.
JCSS 7 (1973), p. 448-461

G it65] I.: It( IC, (., ( IIOUILA-TTOIuit, A.: Programming, Games, and Transportation Networks.
John Wiley, New York, N.Y., 1965

[Bro781 ll(OWN, M.R.: Implementation and Analysis of Binomial Queue Algorithms.
SIAM J. on Comput. 7 (1978), p. 298-319

[Car831 CARRItL, L.: I.awn Tennis Tournaments.
St. James's Gazette (August 1, 1883), p. 5-6. Reprinted in: Ille Complete Works of Lewis
Carroll. New York Modern Library, 1947

[Chc77] CIII:IK ASSKY, H.: Efficient Algorithms for the Maximum Flow Problem.
Akad. Nauk USSR, CEMI, Madlematical Methods for the Solution of Economical Problems 7
(1977), p. 117-125

[ChT761 (ImI:ItI'ITON, I)., TAItJAN, ILlK.: Finding Minimum Spanning Trees.
SIAM J. Comput. 5 (1976), p. 724-742

[l)ij591 I)I.JKS''tA, E.W.: A Note on Two Problems in Connection with Graphs.
Ntimer. Math. 1 (1959), p. 269-271

[I)in7OJ I)INIT''S, E.A.: Algorithm for Solution of a Problem of Maximum Flow in a Network with
Power Estimation.
Soviet Math. I)okl. 11 (1970), p. 1277-1280



I t. |R.FE,:ItINCES 77

[Eve79] EVEN, S.: Graph Algorithms.
Potomac, MD: Computer Science Press, Inc. 1979

[EvK771 Evt,, I., KIURKI-SUONIO, R.: On Computing the Transitive Closure of a Relation.
Acta Informatica 8 (1977), p. 303-314

[Fio621 FLOYO, R.W.: Algorithm 97: Shortest Path.
C.ACM 5 (1962), p. 345

[FIR75] FLOYD, R.W., RiviEs'r, R.L.: Expected Time Bounds for Selection.
Comm. ACM 18 (1975), p. 165-172

[FoF56] FORDn, L.R., FUIKItSON, D.R.: Maximal Flow Through a Network.
Canad. J. Math. 8 (1956), p. 399-404

[Frc761 F'REDMAN, M.L.: New Bounds on the Complexity of the Shortest Path Problem.
SIAM 1. on Comput. 5 (1976), p. 83-89

[Ga179] GAIAL, Z.: On Improving the Worst Case Running Time of the Boyer-Moorc String Matching
Algorithm.
CACM 22 (1979), p. 505-508

(GaM811GALIL, Z., MICALI, S.: An O(IVjIjEjlogIVj) Algorithm for Maximum Weight Flow.
Private Communication

[GaN791 CALM, Z, NAAMAD, A.: Network Flow and Generalized Path Compression.
Proc. l1th Ann. ACM STOC (1979), p. 13-26

[GaS81] GAIL, Z., SEIPERAS, .: Time-space-optimal String Matching.
Proc. 13th Ann. ACM STOC (1981), p. 106-113

[GuO80 GUI|AS, .. 1., ODI.YZKo, A.M.: A New Proof of the linearity of the Boyer-Moore String

Searching Algorithm.
SIAM 1. Comput. 9, (1980), p. 672-682

tl-a1481 IIA 1,L, M.: Distinct Representatives of Subsets.
Bull. A~ii:r. Math. Soc. 54 (1948), p. 922-926

llar80] l lAI.I,, 1).: A L.inear Time Algorithm for the Lowest Common Ancestors Problem.
Proc. 21st Ann. Symp. on FOCS (1980), p. 308-319

[HoK73] Ilovrcttoi."r, J.E., KAILt', lR.M.: An t5 /2 Algorithm for Maximum Matchings in Bipartite
Graphs.
SIAM 1. on Comput. 2 (1973), p. 225-231

[HoT74] llorcnIoil'r, J1., TARJIAN, R.E.: Efficient Planarity Testing.
J.ACM 21 (1974), p. 549-568

IHya76] IIYAIIL, L.: Bounds for Selection.
SIAM I. Comput. 5 (1976), p. 109-114

[Joh73] J0IINSON, l).B.: Algorithms for Shortest Paths.
Ph.D. Thesis. Dept. of Computer Science, Cornell University, Ithaca, N.Y., 1973. Also: EIficient
Algorithms for Shortest Paths in Sparse Networks. J.ACM 24 (1977), p. 1-13

[Kar741 KAItZANOV, A.V.: l)etermining the Maximal 'low in a Network by the Method of Preflows.
Soviet Math. Doki. 15 (1974), p. 434-437

[KMP77jKNUtl, ).E., MORRIS, .11., PRATT, V.R.: Fast Pattern Matching in Strings.
SIAM J. Comput. 6 (1977), p. 323-350

jKnu76) K NIJ'lI, 1). E.: Big Omicron and Big Omega and Big Theta.
ACM Signct News 8, 2, p. 18

IKru56 KituSK AI,, J.11.: On the Shortest Spanning Subtree of a Graph and the Traveling Salesman
Problem.
Proc. Amer. Math. Soc. 7 (1956), p. 48-50

4



78 11. REi'ERPNCiES

IKUr3OI K IIAT~OWSKI, K.: Suir le Probl~rne des Courbcs Gauchcs eni Topologie.
[tind Math. 15 (1930), p. 217-283

II.a~k761 LAWLER~I, 1-'-G..: Comibinatorial Optimization: Networks and Matroids.
I Iolt, Rinehart and Winston, New York-San Francisco-f ondon, 1976

jIiu61 j ,i, (XL.: Introduction to Combinatorial Mathematics.
McGraw-Hill. New York, N.Y., 1968

11.1001 Ii'i1iiKit, (LS.: Sonmc Ixhniques for Solving Recurrenes.
ACN/ Computing Surveys 12, 4 (1980), p. 419-436

[MaR8OI M iujs'Hi.;it, M.IE., R u. s i..i, A.: Eflicicnt On-line Construction and Correction of Postition
TIrees.
SIAM J. Comput. 9 (1980), p. 785-807

jMcC76JN C itu ii'r, IE.M.: A Spacc-cconomical Suffix TFree Construction Algorithm.
J.ACM 23 (1976), p.2 62 -272

jIvi]601 MII.NEi-'li OMSON, I.M.: The Calculus of Finitc Diflcrecces.
Macmillan, London, 1960

(NhfV80f MiCAMi, S., VAZIA NI, V.V.: An O(~/Vj1EIjA) Algorithm for Finding Maximum Matching
in General Graphs.
Proc. 21st Ann. Symp. on FOCS (1980), p. 17-27

[MPM78XIMALHIO'Rlt, V.M., IPI1AMomu KIJMAR, M., MAIIESH WARI, S.: An O(1V13) Algorithm
I'r Finding Maximum I-ows in Networks.
Computer Science Program, Indian (istitutce of'Technology, Kanpur 208016, India, 1978

IP+'Y731 PRT~vT, V.R?., YAO, F.K': On Lower Bounds for Computing the i-tb Largest Element.
Proc. 14th Ann. IEE SWATI (1973), Iowa City, Iowa, p. 70-81

(R6i771 RIN;OLD, H.M., NwIvi':ItCEIr, l1., Dt)1:0, N.: Combinatorial Algorithms: Theory and
Practice.
Prentice-l lall, IEnglewood Cliffs, N.J., 1977

[Rci7SfI Hr:i: ii, A.: A L inear Selection Algorithm for Sets of Elements with Weights.
Inilination Priocessing L etters 7 (1978), p. 159-162

[Rio58I IORDitfA N, J1.: An Introduction to Comibinatorial A nalysis.
J. Wiley, New York, N.Y., 1958

IRio68I R IORDt A N, 1 .: Combinatorial Identities.
J1. Wiley. New York, N.Y., 1968

15ch781 SCHiNOltit, C.P.: An Algorithm for Tlransitive Closure With L.inear Expected Time.
SIAM J. on Comput. 7 (1978), p. 127-133

[Shi7Sf S(IIIOACII, Y.: An O(ti log 2 1) Maximumn-flow Algorithm.
S'l* AN-CS- 78-702. I epartmient of Computer Science, Stanford University, Stan ford, 1978

[SIeSOJ SLKIATIOlt, l).l.K.: An 0(in log in) Algorithm for Maximlumn Network Flow.
I )partmen t Of Computer Science Report No. SIA N-CS-80-83 I, Stanford University, Stan ford,
l1ec. 1980

15PP76] 8UIION11ACI:f , A., PA'I'IntSON, M., IPIII'tNuim, N.: Finding the Median.
JUSS 13 (1976). p. 184-199

rl'ar751 TAI?.JAN, I..:Efficiency of a Good But Not Linear Set Union Algorithm.
J.,\CM 22 (1975), p. 2 15-225

[l'ar771 TIA It.A N, R~.lX: Reference Machines Require Non-linear Time to Maintain D)isjoint Sets.
Proc. 9th ACMI SIOC (1977), p). 18-29

[I'ar791 'l~TAIAN, R.E.: Applications of P'athi Compression on Balanced TFrees.
J.ACM 26 (1979), p. 090-715



|It. R I{IF IN(,,ES 79

['ut471 T u'r'T',;, W.T. :The F'actorization of I .near Graphs.
J. London Math. Soc. 22 (1947), p. 107-111

JVui781 V UILLMt N, .1.: A I)ata Structure t(r Manipulating Priority Queues.
Comm. ACM 21 (1978), p. 309-315

[War621 WAIt IIm,1,, S.: A Theorem on Boolean Matrices.
JACM 9 (1962), p. 11-12

[Wci73] WI. -NE, P'.: L.inear Pattern Matching Algorithms.
Prtc. lI'fT.E 14th Ann. SWAT (1973), p. 1-11

IYAR77] YAO, A.C., Avis, l).M., RIVES'S, ILl.: An f0(n 2 logn) Lower Bound to the Shortcst Paths
Problem.
Proc. 9th ACM STOC (1977), p. 11-17

[Zah731 ZAI i'iI, N.: More Pathological Fxamples for Network Flow Problems.
Math. Programming 5 (1973), p. 217-224

! -



DTI


